Back to Search Start Over

Numerical study on breaking solitary wave force on box-girder bridge

Authors :
Wanli Yang
Sijing Li
Junling Liu
Wenbo Wu
Hui Li
Ning Wang
Source :
Advances in Bridge Engineering, Vol 2, Iss 1, Pp 1-29 (2021)
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Solitary wave is often used to simulate tsunami propagating in deep water and breaking solitary wave is often used to simulate tsunami bore propagating in shallow water or on land. The breaking solitary wave force on box-girder, which has been widely used in bridge engineering in coastal areas of China, receives few attentions. This study aims to investigate characteristics and generation mechanism of breaking solitary wave force on box-girder numerically. A numerical wave flume with a 1:20 slope was built firstly, then the solitary wave generation ability, wave deformation and wave breaking on the slope, as well as wave force calculation precision, are validated. The water depth 0.6 m, the slope gradient 1:20 and the distance between slope top and box-girder 2.0 m remain unchanged, while the wave height and clearance changes in different cases. The time histories of horizontal force and vertical force on box-girder can be divided into three and four stages respectively according to their characteristics. The surface of box-girder is decomposed into a series of panels to facilitate exploring tsunami bore force generation mechanism. Results show horizontal force is dominated by static pressure on upstream vertical panels and vertical force is mainly contributed by static pressure on upstream horizontal panels and on panels in the chambers. Tsunami bore overtopping the box-girder deck impacts the top panel vigorously and results in the peak value of negative vertical force.

Details

ISSN :
26625407
Volume :
2
Database :
OpenAIRE
Journal :
Advances in Bridge Engineering
Accession number :
edsair.doi.dedup.....743291c0a78d5730fb7caebe43e860e2
Full Text :
https://doi.org/10.1186/s43251-021-00048-5