Back to Search
Start Over
Molecular Dynamics Simulation of the Conformational Preferences of Pseudouridine Derivatives: Improving the Distribution in the Glycosidic Torsion Space
- Source :
- Journal of Chemical Information and Modeling. 60:4995-5002
- Publication Year :
- 2020
- Publisher :
- American Chemical Society (ACS), 2020.
-
Abstract
- There are only four derivatives of pseudouridine (Ψ) that are known to occur naturally in RNA as post-transcriptional modifications. We have studied the conformational consequences of pseudouridylation and further modifications using replica exchange molecular dynamics simulations at the nucleoside level, and the simulated conformational preferences were compared with the available experimental (NMR) data. We found that the existing AMBER FF99-derived parameters for these nucleosides did not reproduce the observed experimental features and while the recommended bsc0 correction could be combined with these parameters leading to an improvement in the description of sugar pucker distributions, the χOL3 correction could not be applied to these nucleosides as such because of base isomerization. On the other hand, the revised χ torsion parameters (χIDRP) for Ψ developed earlier by us (Deb, I., J. Comput. Chem., 2016, 37, 1576-1588) in combination with the AMBER provided parameters and the revised γ torsion parameters generated conformational distributions, which generally were in better agreement with the experimental data. A significant shift of the distribution of base orientation toward the syn conformation was observed with our revised parameter sets compared to the large excess of anti conformation predicted by the FF99 parameters. Overall, our observations indicated that our revised set of parameters (χIDRP) for Ψ were also able to generate conformational distributions for all of the derivatives of Ψ in better agreement with the experimental data.
- Subjects :
- chemistry.chemical_classification
Physics
010304 chemical physics
General Chemical Engineering
Carbohydrates
Molecular Conformation
Torsion (mechanics)
Thermodynamics
Glycosidic bond
General Chemistry
Molecular Dynamics Simulation
Library and Information Sciences
01 natural sciences
Pseudouridine
0104 chemical sciences
Computer Science Applications
010404 medicinal & biomolecular chemistry
chemistry.chemical_compound
Molecular dynamics
chemistry
0103 physical sciences
Alkane stereochemistry
Glycosides
Isomerization
Subjects
Details
- ISSN :
- 1549960X and 15499596
- Volume :
- 60
- Database :
- OpenAIRE
- Journal :
- Journal of Chemical Information and Modeling
- Accession number :
- edsair.doi.dedup.....7434b9b6c0f40ac036a855fcfd03f611
- Full Text :
- https://doi.org/10.1021/acs.jcim.0c00369