Back to Search
Start Over
Effect of Nanoparticle Size and Natural Organic Matter Composition on the Bioavailability of Polyvinylpyrrolidone-Coated Platinum Nanoparticles to a Model Freshwater Invertebrate
- Source :
- Environmental Science & Technology. 55:2452-2461
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- The bioavailability of dissolved Pt(IV) and polyvinylpyrrolidone-coated platinum nanoparticles (PtNPs) of five different nominal hydrodynamic diameters (20, 30, 50, 75, and 95 nm) was characterized in laboratory experiments using the model freshwater snail Lymnaea stagnalis. Dissolved Pt(IV) and all nanoparticle sizes were bioavailable to L. stagnalis. Platinum bioavailability, inferred from conditional uptake rate constants, was greater for nanoparticulate than dissolved forms and increased with increasing nanoparticle hydrodynamic diameter. The effect of natural organic matter (NOM) composition on PtNP bioavailability was evaluated using six NOM samples at two nanoparticle sizes (20 and 95 nm). NOM suppressed the bioavailability of 95 nm PtNPs in all cases, and DOM reduced sulfur content exhibited a positive correlation with 95 nm PtNP bioavailability. The bioavailability of 20 nm PtNPs was only suppressed by NOM with a low reduced sulfur content. The physiological elimination of Pt accumulated after dissolved Pt(IV) exposure was slow and constant. In contrast, the elimination of Pt accumulated after PtNP exposures exhibited a triphasic pattern likely involving in vivo PtNP dissolution. This work highlights the importance of PtNP size and interfacial interactions with NOM on Pt bioavailability and suggests that in vivo PtNP transformations could yield unexpectedly higher adverse effects to organisms than dissolved exposure alone.
- Subjects :
- Biological Availability
Metal Nanoparticles
chemistry.chemical_element
Nanoparticle
Fresh Water
Lymnaea stagnalis
010501 environmental sciences
Platinum nanoparticles
01 natural sciences
medicine
Animals
Environmental Chemistry
Dissolution
Platinum
0105 earth and related environmental sciences
Polyvinylpyrrolidone
biology
Povidone
General Chemistry
biology.organism_classification
Bioavailability
chemistry
Composition (visual arts)
Nuclear chemistry
medicine.drug
Subjects
Details
- ISSN :
- 15205851 and 0013936X
- Volume :
- 55
- Database :
- OpenAIRE
- Journal :
- Environmental Science & Technology
- Accession number :
- edsair.doi.dedup.....74590d77eff1bf8aea3d40e1e79130e6
- Full Text :
- https://doi.org/10.1021/acs.est.0c05985