Back to Search
Start Over
Fungal Recognition Enhances Mannose Receptor Shedding through Dectin-1 Engagement
- Source :
- The Journal of Biological Chemistry, Journal of biological chemistry, 286(10), 7822-7829. American Society for Biochemistry and Molecular Biology Inc.
- Publication Year :
- 2011
- Publisher :
- Elsevier BV, 2011.
-
Abstract
- The mannose receptor (MR) is an endocytic type I membrane molecule with a broad ligand specificity that is involved in both hemostasis and pathogen recognition. Membrane-anchored MR is cleaved by a metalloproteinase into functional soluble MR (sMR) composed of the extracellular domains of intact MR. Although sMR production was initially considered a constitutive process, enhanced MR shedding has been observed in response to the fungal pathogen Pneumocystis carinii. In this work, we have investigated the mechanism mediating enhanced MR shedding in response to fungi. We show that other fungal species, including Candida albicans and Aspergillus fumigatus, together with zymosan, a preparation of the cell wall of Saccharomyces cerevisiae, mimic the effect of P. carinii on sMR production and that this effect takes place mainly through β-glucan recognition. Additionally, we demonstrate that MR cleavage in response to C. albicans and bioactive particulate β-glucan requires expression of dectin-1. Our data, obtained using specific inhibitors, are consistent with the canonical Syk-mediated pathway triggered by dectin-1 being mainly responsible for inducing MR shedding, with Raf-1 being partially involved. As in the case of steady-state conditions, MR shedding in response to C. albicans and β-glucan particles requires metalloprotease activity. The induction of MR shedding by dectin-1 has clear implications for the role of MR in fungal recognition, as sMR was previously shown to retain the ability to bind fungal pathogens and can interact with numerous host molecules, including lysosomal hydrolases. Thus, MR cleavage could also impact on the magnitude of inflammation during fungal infection.
- Subjects :
- Mouse
Macrophage
Immunology
Endocytic cycle
ADAMTS
Nerve Tissue Proteins
Receptors, Cell Surface
Biochemistry
Aspergillus fumigatus
Microbiology
Metalloprotease
Mice
chemistry.chemical_compound
Animals
Lectins, C-Type
Receptor
Candida albicans
Molecular Biology
Shedding
Inflammation
Mice, Inbred BALB C
Metalloproteinase
biology
Zymosan
Fungi
ADAM
Membrane Proteins
Cell Biology
biology.organism_classification
Corpus albicans
Mannose-Binding Lectins
Mycoses
chemistry
Macrophages, Peritoneal
Lectin
Mannose Receptor
Mannose receptor
Subjects
Details
- ISSN :
- 00219258
- Volume :
- 286
- Database :
- OpenAIRE
- Journal :
- Journal of Biological Chemistry
- Accession number :
- edsair.doi.dedup.....74a099415044475724ca1dd8936f48d0