Back to Search Start Over

Experiments and DFT Computations Combine to Decipher Fe-Catalyzed Amidine Synthesis through Nitrene Transfer and Nitrile Insertion

Authors :
Colette Lebrun
Ranjan Patra
Guillaume Coin
Jacques Pécaut
Ludovic Castro
Pascale Maldivi
Patrick Dubourdeaux
Jean-Marc Latour
Pierre-Alain Bayle
Frédéric Avenier
Geneviève Blondin
Physiochimie des Métaux (PMB)
Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Département de Chimie Moléculaire - Chimie Inorganique Redox (DCM - CIRE )
Département de Chimie Moléculaire (DCM)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)
Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Amity Institute of Click Chemistry Research & Studies (AICCRS)
Conception d’Architectures Moléculaires et Processus Electroniques (CAMPE )
SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES)
Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST )
Modélisation et Exploration des Matériaux (MEM)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (DCM - CIRE )
Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
ACS Catalysis, ACS Catalysis, 2021, 11 (4), pp.2253-2266. ⟨10.1021/acscatal.0c03791⟩, ACS Catalysis, American Chemical Society, 2021, 11 (4), pp.2253-2266. ⟨10.1021/acscatal.0c03791⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Multicomponent reactions are attracting strong interest as they contribute to the development of more efficient synthetic chemistry. Understanding their mechanism is thus an important issue to optimize their operation. However, it is also a challenging task owing to the complexity of the succession of molecular events involved. Computational methods have recently proven to be of utmost interest to help decipher some of these processes, and the development of integrated experimental and theoretical approaches thus appears as the most powerful means to understand these mechanisms at the molecular level. A good example is given by the synthesis of amidines which are important pharmaceutical compounds. Their synthesis requires the association of three components, often an alkyne, a secondary amine, and an organic azide as the nitrene precursor. We found that an alternative way is offered by an Fe-catalyzed combination of a hydrocarbon, a nitrile, and a nitrene which gives amidines in good yields under mild conditions. The efficiency of the transformation and the paucity of mechanistic information on these reactions prompted us to thoroughly investigate its mechanism. Several mechanistic scenarios were explored using experimental techniques, including radical trap and N-15 labeling studies, combined with density-functional theory (DFT) calculations of reaction profiles. This allowed us to show that the amidination reaction involves the trapping of an intermediate substrate cation by an Fe-released acetonitrile molecule pointing to a true multicomponent reaction occurring exclusively within the cage around the metal center. Moreover, the calculated energy barriers of the individual steps explained how amidination outweighs direct amination in these reactions. The perfect consistency between DFT results and specific experiments to validate them strongly supports these mechanistic conclusions and highlights the potency of this combined approach.

Details

Language :
English
ISSN :
21555435
Database :
OpenAIRE
Journal :
ACS Catalysis, ACS Catalysis, 2021, 11 (4), pp.2253-2266. ⟨10.1021/acscatal.0c03791⟩, ACS Catalysis, American Chemical Society, 2021, 11 (4), pp.2253-2266. ⟨10.1021/acscatal.0c03791⟩
Accession number :
edsair.doi.dedup.....74b4c37b79b7318e1402d170a00654e7
Full Text :
https://doi.org/10.1021/acscatal.0c03791⟩