Back to Search Start Over

A multiparametric advection-diffusion reduced-order model for molecular transport in scaffolds for osteoinduction

Authors :
Muixí Ballonga, Alba
Zlotnik, Sergio
Calvet Tordera, Pere
Español Pons, Montserrat
Lodoso Torrecilla, Irene
Ginebra Molins, Maria Pau
Díez, Pedro
García González, Alberto
Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
Universitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

The version of record is available online at: http://dx.doi.org/10.1007/s10237-022-01577-2 Scaffolds are microporous biocompatible structures that serve as material support for cells to proliferate, differentiate and form functional tissue. In particular, in the field of bone regeneration, insertion of scaffolds in a proper physiological environment is known to favour bone formation by releasing calcium ions, among others, triggering differentiation of mesenchymal cells into osteoblasts. Computational simulation of molecular distributions through scaffolds is a potential tool to study the scaffolds’ performance or optimal designs, to analyse their impact on cell differentiation, and also to move towards reduction in animal experimentation. Unfortunately, the required numerical models are often highly complex and computationally too costly to develop parametric studies. In this context, we propose a computational parametric reduced-order model to obtain the distribution of calcium ions in the interstitial fluid flowing through scaffolds, depending on several physical parameters. We use the well-known Proper Orthogonal Decomposition (POD) with two different variations: local POD and POD with quadratic approximations. Computations are performed using two realistic geometries based on a foamed and a 3D-printed scaffolds. The location of regions with high concentration of calcium in the numerical simulations is in fair agreement with regions of bone formation shown in experimental observations reported in the literature. Besides, reduced-order solutions accurately approximate the reference finite element solutions, with a significant decrease in the number of degrees of freedom, thus avoiding computationally expensive simulations, especially when performing a parametric analysis. The proposed reduced-order model is a competitive tool to assist the design of scaffolds in osteoinduction research. The authors acknowledge the financial support from the Ministerio de Ciencia e Innovación (MCIN/ AEI/10.13039/501100011033) through the grants PID2020-113463RBC32, PID2020-113463RB-C33, CEX2018-000797-S and PID2019-103892RB-I00, and the Generalitat de Catalunya for the Serra Hunter Fellowship of ME and the ICREA Academia Award of MPG.

Details

ISSN :
16177940 and 16177959
Volume :
21
Database :
OpenAIRE
Journal :
Biomechanics and Modeling in Mechanobiology
Accession number :
edsair.doi.dedup.....74b5c9dedd81fe1f72556b4bbfe42922