Back to Search
Start Over
M3C: A Computational Approach to Describe Statistical Fragmentation of Excited Molecules and Clusters
- Source :
- Biblos-e Archivo. Repositorio Institucional de la UAM, instname, Repositorio Institucional del Instituto Madrileño de Estudios Avanzados en Nanociencia, Biblos-e Archivo: Repositorio Institucional de la UAM, Universidad Autónoma de Madrid
- Publication Year :
- 2017
- Publisher :
- American Chemical Society, 2017.
-
Abstract
- This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [insert ACS Articles on Request author-directed link to Published Work, see http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00984<br />The Microcanonical Metropolis Monte Carlo method, based on a random sampling of the density of states, is revisited for the study of molecular fragmentation in the gas phase (isolated molecules, atomic and molecular clusters, complex biomolecules, etc.). A random walk or uniform random sampling in the configurational space (atomic positions) and a uniform random sampling of the relative orientation, vibrational energy, and chemical composition of the fragments is used to estimate the density of states of the system, which is continuously updated as the random sampling populates individual states. The validity and usefulness of the method is demonstrated by applying it to evaluate the caloric curve of a weakly bound rare gas cluster (Ar13 ), to interpret the fragmentation of highly excited small neutral and singly positively charged carbon clusters (Cn , n = 5,7,9 and Cn+, n = 4,5) and to simulate the mass spectrum of the acetylene molecule (C2H2 )<br />Work was supported by the MINECO projects FIS2013-42002-R and CTQ2013-43698-P the CAM project NANOFRONTMAG-CM ref S2013/MIT-2850S, and the European COST Action CM1204 XLIC. S.D.-T. gratefully acknowledges the Ramon y Cajal program of the Spanish MINECO. Financial support from the Spanish Ministry of Economy and Competitiveness, through The Maria de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0377) is acknowledged
- Subjects :
- 010304 chemical physics
Chemistry
Monte Carlo method
Química
Random walk
01 natural sciences
Computer Science Applications
Fragmentation of Excited Molecules
Clusters
Fragmentation (mass spectrometry)
Excited state
0103 physical sciences
Mass spectrum
Cluster (physics)
Density of states
Molecule
Physical and Theoretical Chemistry
Atomic physics
010306 general physics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Biblos-e Archivo. Repositorio Institucional de la UAM, instname, Repositorio Institucional del Instituto Madrileño de Estudios Avanzados en Nanociencia, Biblos-e Archivo: Repositorio Institucional de la UAM, Universidad Autónoma de Madrid
- Accession number :
- edsair.doi.dedup.....74daef6056c32914aa138e2a807c4bf4