Back to Search
Start Over
Orlicz regularity of the gradient of solutions to quasilinear elliptic equations in the plane
- Source :
- Boundary Value Problems. 2016
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- Given a planar domain Ω, we study the Dirichlet problem $$\textstyle\begin{cases} {-}\operatorname {div}A(x, \nabla v)= f & \mbox{in } \Omega,\\ v=0 & \mbox{on } \partial\Omega, \end{cases} $$ where the higher-order term is a quasilinear elliptic operator, and f belongs to the Zygmund space $L (\log L)^{\delta} (\log\log\log L)^{\frac{\beta}{2}}(\Omega)$ with $\beta\geq0$ and $\delta\geq \frac{1}{2}$ . We prove that the gradient of the variational solution $v \in W^{1,2}_{0}(\Omega)$ belongs to the space $L^{2} (\log L)^{2\delta-1} (\log \log\log L)^{\beta}(\Omega)$ .
- Subjects :
- Dirichlet problem
Algebra and Number Theory
gradient regularity
Plane (geometry)
010102 general mathematics
Mathematical analysis
Mathematics::Analysis of PDEs
Space (mathematics)
Zygmund spaces
01 natural sciences
Omega
010101 applied mathematics
Elliptic operator
Domain (ring theory)
quasilinear elliptic equations
Nabla symbol
0101 mathematics
Analysis
Mathematics
Subjects
Details
- ISSN :
- 16872770
- Volume :
- 2016
- Database :
- OpenAIRE
- Journal :
- Boundary Value Problems
- Accession number :
- edsair.doi.dedup.....74eaae95a93c4fc436ce45334c7b6f17
- Full Text :
- https://doi.org/10.1186/s13661-016-0607-6