Back to Search
Start Over
Thin shell analysis from scattered points with maximum-entropy approximants
- Source :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya, instname, Scipedia Open Access, Scipedia SL, International Journal for Numerical Methods in Engineering
- Publication Year :
- 2011
- Publisher :
- John Wiley & Sons, 2011.
-
Abstract
- This is the accepted version of the following article: [Millán, D., Rosolen, A. and Arroyo, M. (2011), Thin shell analysis from scattered points with maximum-entropy approximants. Int. J. Numer. Meth. Engng., 85: 723–751. doi:10.1002/nme.2992], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.2992/abstract We present a method to process embedded smooth manifolds using sets of points alone. This method avoids any global parameterization and hence is applicable to surfaces of any genus. It combines three ingredients: (1) the automatic detection of the local geometric structure of the manifold by statistical learning methods; (2) the local parameterization of the surface using smooth meshfree (here maximum-entropy) approximants; and (3) patching together the local representations by means of a partition of unity. Mesh-based methods can deal with surfaces of complex topology, since they rely on the element-level parameterizations, but cannot handle high-dimensional manifolds, whereas previous meshfree methods for thin shells consider a global parametric domain, which seriously limits the kinds of surfaces that can be treated. We present the implementation of the method in the context of Kirchhoff–Love shells, but it is applicable to other calculations on manifolds in any dimension. With the smooth approximants, this fourth-order partial differential equation is treated directly. We show the good performance of the method on the basis of the classical obstacle course. Additional calculations exemplify the flexibility of the proposed approach in treating surfaces of complex topology and geometry.
- Subjects :
- Engineering, Civil
Shell (structure)
Elements finits, Mètode dels
Engineering, Multidisciplinary
Geometry
Enginyeria civil::Materials i estructures [Àrees temàtiques de la UPC]
02 engineering and technology
Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits [Àrees temàtiques de la UPC]
01 natural sciences
Local structure
0203 mechanical engineering
Thin shells
Meshfree methods
Statistical analysis
Engineering, Ocean
0101 mathematics
Engineering, Aerospace
Engineering, Biomedical
Mathematics
Numerical Analysis
point-set surfaces
Meshfree methods (Numerical analysis)
Applied Mathematics
Principle of maximum entropy
meshfree methods
General Engineering
Computer Science, Software Engineering
thin shells
Engineering, Marine
Smooth surface
maximum-entropy approximants
010101 applied mathematics
Engineering, Manufacturing
Engineering, Mechanical
020303 mechanical engineering & transports
Mesh generation
Engineering, Industrial
Shells (Engineering)
Estructures laminars -- Mètodes numèrics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya, instname, Scipedia Open Access, Scipedia SL, International Journal for Numerical Methods in Engineering
- Accession number :
- edsair.doi.dedup.....752d1cc91fa938114b5fcebc1f82f8ff
- Full Text :
- https://doi.org/10.1002/nme.2992