Back to Search
Start Over
Toward Improved Accuracy in Chlorine Isotope Analysis: Synthesis Routes for In-House Standards and Characterization via Complementary Mass Spectrometry Methods
- Source :
- Anal. Chem. 91, 12290-12297 (2019)
- Publication Year :
- 2019
-
Abstract
- Increasing applications of compound-specific chlorine isotope analysis (CSIA) emphasize the need for chlorine isotope standards that bracket a wider range of isotope values in order to ensure accurate results. With one exception (USGS38), however, all international chlorine isotope reference materials (chloride and perchlorate salts) fall within the narrow range of one per mille. Furthermore, compound-specific working standards are required for chlorine CSIA but are not available for most organic substances. We took advantage of isotope effects in chemical dehalogenation reactions to generate (i) silver chloride (CT16) depleted in 37Cl/35Cl and (ii) compound-specific standards of the herbicides acetochlor and S-metolachlor (Aceto2, Metola2) enriched in 37Cl/35Cl. Calibration against the international reference standards USGS38 (-87.90 ‰) and ISL-354 (+0.05 ‰) by complementary methods (gas chromatography-isotope ratio mass spectrometry, GC-IRMS, versus gas chromatography-multicollector inductively coupled plasma mass spectrometry, GC-MC-ICPMS) gave a consensus value of δ37ClCT16 = -26.82 ± 0.18 ‰. Preliminary GC-MC-ICPMS characterization of commercial Aceto1 and Metola1 versus Aceto2 and Metola2 resulted in tentative values of δ37ClAceto1 = 0.29 ± 0.29 ‰, δ37ClAceto2 = 18.54 ± 0.20 ‰, δ37ClMetola1 = -4.28 ± 0.17 ‰ and δ37ClMetola2 = 5.12 ± 0.27 ‰. The possibility to generate chlorine isotope in-house standards with pronounced shifts in isotope values offers a much-needed basis for accurate chlorine CSIA.
- Subjects :
- Isotope
Chemistry
010401 analytical chemistry
Radiochemistry
Analysis synthesis
Isotopes of chlorine
010402 general chemistry
Mass spectrometry
01 natural sciences
Physics::Geophysics
0104 chemical sciences
Analytical Chemistry
Characterization (materials science)
13. Climate action
polycyclic compounds
Physics::Atomic Physics
Physics::Chemical Physics
Nuclear Experiment
Astrophysics::Galaxy Astrophysics
Subjects
Details
- ISSN :
- 15206882
- Volume :
- 91
- Issue :
- 19
- Database :
- OpenAIRE
- Journal :
- Analytical chemistry
- Accession number :
- edsair.doi.dedup.....7553bc27ef6d93efbf73751630ddd831