Back to Search Start Over

Effects of streptozotocin on pancreatic islet β-cell apoptosis and glucose metabolism in zebrafish larvae

Authors :
Xiqiang Chen
Sheng Wenlong
Qing Xia
Kechun Liu
Xue-liang Yang
Yun Zhang
Rongchun Wang
Xue Wang
Source :
Fish physiology and biochemistry. 46(3)
Publication Year :
2019

Abstract

Type 1 diabetes is characterized by an increase in blood glucose levels resulting from damage to β cells in pancreatic islets and the consequent absolute insufficiency of insulin. Animal models of type 1 diabetes were usually established using drugs toxic to β cells, such as streptozotocin (STZ). To assess the application of zebrafish larvae in diabetes research, we explore the effects of STZ on pancreatic islets and glucose metabolism in zebrafish larvae. STZ was microinjected into the pericardial cavity of zebrafish larvae on alternate days for three times. At 2 days after the whole series of STZ injection (12 dpf), free-glucose level in larvae tissue shows a significant increase, and the fluorescence signal in immunohistochemistry, which indicates the insulin expression, was significantly weaker compared with the solution-injected control. Obvious apoptosis signals were also observed in the location of pancreatic islet, and insulin content decreased to be undetectable in STZ-injected larvae. Gene expression level of ins decreased to half of the solution injection control and that of casp3a was upregulated by 2.20-fold. Expression level of glut2 and gck decreased to 0.312-fold and 0.093-fold, respectively. pck1 was upregulated by 2.533-fold in STZ-injected larvae. By tracking detection, we found the free-glucose level in STZ-injected larvae gradually approached the level of the solution injection control and the insulin content recovered at 6 days post-STZ injection (16 dpf). Consistent with the change of the glucose level, the regeneration rate of the caudal fin in the STZ-injected group decreased initially, but recovered and accelerated gradually finally at 8 days post-amputation (20 dpf). These results indicate the generation of a transient hyperglycemia model due to β-cell apoptosis caused by STZ, which is abated by the vigorous regeneration ability of β cells in zebrafish larvae.

Details

ISSN :
15735168
Volume :
46
Issue :
3
Database :
OpenAIRE
Journal :
Fish physiology and biochemistry
Accession number :
edsair.doi.dedup.....758b86333cefab4d472437832ce4f72a