Back to Search
Start Over
Representability of Hom implies flatness
- Publication Year :
- 2003
-
Abstract
- Let $X$ be a projective scheme over a noetherian base scheme $S$, and let $F$ be a coherent sheaf on $X$. For any coherent sheaf $E$ on $X$, consider the set-valued contravariant functor $Hom_{E,F}$ on $S$-schemes, defined by $Hom_{E,F}(T) = Hom(E_T,F_T)$ where $E_T$ and $F_T$ are the pull-backs of $E$ and $F$ to $X_T = X\times_S T$. A basic result of Grothendieck ([EGA] III 7.7.8, 7.7.9) says that if $F$ is flat over $S$ then $Hom_{E,F}$ is representable for all $E$. We prove the converse of the above, in fact, we show that if $L$ is a relatively ample line bundle on $X$ over $S$ such that the functor $Hom_{L^{-n},F}$ is representable for infinitely many positive integers $n$, then $F$ is flat over $S$. As a corollary, taking $X=S$, it follows that if $F$ is a coherent sheaf on $S$ then the functor $T\mapsto H^0(T, F_T)$ on the category of $S$-schemes is representable if and only if $F$ is locally free on $S$. This answers a question posed by Angelo Vistoli. The techniques we use involve the proof of flattening stratification, together with the methods used in proving the author's earlier result (see arXiv.org/abs/math.AG/0204047) that the automorphism group functor of a coherent sheaf on $S$ is representable if and only if the sheaf is locally free.<br />9 pages, LaTeX
- Subjects :
- Ample line bundle
Discrete mathematics
Pure mathematics
Functor
Mathematics::Commutative Algebra
General Mathematics
Invertible sheaf
Coherent sheaf
Proj construction
Base change
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
Group scheme
Mathematics::K-Theory and Homology
Mathematics::Category Theory
FOS: Mathematics
Sheaf
14A15 (Primary) 14F05, 14L15 (Secondary)
Algebraic Geometry (math.AG)
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....758fd682dd1d74e582057a04731c51f5