Back to Search Start Over

Markovian Repeated Interaction Quantum Systems

Authors :
Jean-François Bougron
Alain Joye
Claude-Alain Pillet
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Université de Cergy Pontoise (UCP)
Université Paris-Seine
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
CPT - E8 Dynamique quantique et analyse spectrale
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Analyse, Géométrie et Modélisation (AGM - UMR 8088)
Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
CPT - E5 Physique statistique et systèmes complexes
ANR-17-CE40-0006,NONSTOPS,Systèmes stochastiques et ouverts hors équilibre(2017)
Source :
Reviews in Mathematical Physics, Reviews in Mathematical Physics, 2022, 34 (9), pp.2250028. ⟨10.1142/S0129055X22500283⟩
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

International audience; We study a class of dynamical semigroups $(\mathbb{L}^n)_{n\in\mathbb{N}}$ that emerge, by a Feynman--Kac type formalism, from a random quantum dynamical system $(\mathcal{L}_{\omega_n}\circ\cdots\circ\mathcal{L}_{\omega_1}(\rho_{\omega_0}))_{n\in\mathbb{N}}$ driven by a Markov chain $(\omega_n)_{n\in\mathbb{N}}$. We show that the almost sure large time behavior of the system can be extracted from the large $n$ asymptotics of the semigroup, which is in turn directly related to the spectral properties of the generator $\mathbb{L}$. As a physical application, we consider the case where the $\mathcal{L}_\omega$'s are the reduced dynamical maps describing the repeated interactions of a system $\mathcal{S}$ with thermal probes $\mathcal{C}_\omega$. We study the full statistics of the entropy in this system and derive a fluctuation theorem for the heat exchanges and the associated linear response formulas.

Details

ISSN :
0129055X
Database :
OpenAIRE
Journal :
Reviews in Mathematical Physics, Reviews in Mathematical Physics, 2022, 34 (9), pp.2250028. ⟨10.1142/S0129055X22500283⟩
Accession number :
edsair.doi.dedup.....759cd980cd324e7d12f32d99499056fa
Full Text :
https://doi.org/10.48550/arxiv.2202.05321