Back to Search Start Over

Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system

Authors :
David Chiovitti
Dante Neculai
Amy A. Caudy
Jonathan Strecker
Daniel Durocher
Frank Sicheri
Rachel K. Szilard
Leo C. K. Wan
Fang Yuan
Elena Lissina
Igor Kurinov
Gennadiy Poda
Corey Nislow
Daniel Y.L. Mao
Neroshan Thevakumaran
Source :
Nucleic Acids Research
Publication Year :
2013
Publisher :
Oxford University Press (OUP), 2013.

Abstract

The universally conserved Kae1/Qri7/YgjD and Sua5/YrdC protein families have been implicated in growth, telomere homeostasis, transcription and the N6-threonylcarbamoylation (t(6)A) of tRNA, an essential modification required for translational fidelity by the ribosome. In bacteria, YgjD orthologues operate in concert with the bacterial-specific proteins YeaZ and YjeE, whereas in archaeal and eukaryotic systems, Kae1 operates as part of a larger macromolecular assembly called KEOPS with Bud32, Cgi121, Gon7 and Pcc1 subunits. Qri7 orthologues function in the mitochondria and may represent the most primitive member of the Kae1/Qri7/YgjD protein family. In accordance with previous findings, we confirm that Qri7 complements Kae1 function and uncover that Qri7 complements the function of all KEOPS subunits in growth, t(6)A biosynthesis and, to a partial degree, telomere maintenance. These observations suggest that Kae1 provides a core essential function that other subunits within KEOPS have evolved to support. Consistent with this inference, Qri7 alone is sufficient for t(6)A biosynthesis with Sua5 in vitro. In addition, the 2.9 Å crystal structure of Qri7 reveals a simple homodimer arrangement that is supplanted by the heterodimerization of YgjD with YeaZ in bacteria and heterodimerization of Kae1 with Pcc1 in KEOPS. The partial complementation of telomere maintenance by Qri7 hints that KEOPS has evolved novel functions in higher organisms.

Details

ISSN :
13624962 and 03051048
Volume :
41
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....75ae4e9b8c71c88be1ae4742015baf19
Full Text :
https://doi.org/10.1093/nar/gkt322