Back to Search
Start Over
CryoSheds: a GIS modeling framework for delineating land-ice watersheds for the Greenland Ice Sheet
- Publication Year :
- 2016
- Publisher :
- Taylor & Francis, 2016.
-
Abstract
- Choice of watershed delineation technique is an important source of uncertainty for cryo-hydrologic studies of the Greenland Ice Sheet (GrIS), with different methods yielding different watersheds for a common pour point. First, this paper explores this uncertainty for the Akuliarusiarsuup Kuua River Northern Tributary, Western Greenland. Next, a standardized, semi-automated modeling framework for generating land-ice watersheds for GrIS land-terminating ice (henceforth referred to as CryoSheds) using geographic information systems (GIS) hydrologic modeling tools is presented. The framework uses ArcGIS and the ArcPy geoprocessing library to delineate two types of land-ice watersheds, namely those defined by: (1) a hydraulic pressure potential with varying water to ice overburden pressure ratios (k-value), which determines theoretical flow paths from the hydrostatic equation, using surface and bedrock digital elevation models (DEMs) and (2) a surface topography DEM alone. Lastly, a demonstration of the CryoSheds method is presented for seven remotely sensed proglacial pour points along the Aussivigssuit River (AR), Western Greenland, and its largest tributaries. GrIS meltwater runoff from these seven nested land-ice watersheds is estimated using Modele Atmospherique Regional (MAR) v.3.2 and runoff uncertainties due to watershed delineation parameter selection is estimated.
- Subjects :
- Hydrology
geography.geographical_feature_category
Watershed
Geographic information system
010504 meteorology & atmospheric sciences
business.industry
Bedrock
Hydrological modelling
Greenland ice sheet
Geoprocessing
010502 geochemistry & geophysics
01 natural sciences
Geography
Tributary
General Earth and Planetary Sciences
business
Digital elevation model
0105 earth and related environmental sciences
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....75fa7f708861b26ad70961c0c919ed71
- Full Text :
- https://doi.org/10.6084/m9.figshare.3843528