Back to Search Start Over

CryoSheds: a GIS modeling framework for delineating land-ice watersheds for the Greenland Ice Sheet

Authors :
Kang Yang
Colin J. Gleason
Lincoln H. Pitcher
Laurence C. Smith
Publication Year :
2016
Publisher :
Taylor & Francis, 2016.

Abstract

Choice of watershed delineation technique is an important source of uncertainty for cryo-hydrologic studies of the Greenland Ice Sheet (GrIS), with different methods yielding different watersheds for a common pour point. First, this paper explores this uncertainty for the Akuliarusiarsuup Kuua River Northern Tributary, Western Greenland. Next, a standardized, semi-automated modeling framework for generating land-ice watersheds for GrIS land-terminating ice (henceforth referred to as CryoSheds) using geographic information systems (GIS) hydrologic modeling tools is presented. The framework uses ArcGIS and the ArcPy geoprocessing library to delineate two types of land-ice watersheds, namely those defined by: (1) a hydraulic pressure potential with varying water to ice overburden pressure ratios (k-value), which determines theoretical flow paths from the hydrostatic equation, using surface and bedrock digital elevation models (DEMs) and (2) a surface topography DEM alone. Lastly, a demonstration of the CryoSheds method is presented for seven remotely sensed proglacial pour points along the Aussivigssuit River (AR), Western Greenland, and its largest tributaries. GrIS meltwater runoff from these seven nested land-ice watersheds is estimated using Modele Atmospherique Regional (MAR) v.3.2 and runoff uncertainties due to watershed delineation parameter selection is estimated.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....75fa7f708861b26ad70961c0c919ed71
Full Text :
https://doi.org/10.6084/m9.figshare.3843528