Back to Search Start Over

Unleashing GPUs for Network Function Virtualization: an open architecture based on Vulkan and Kubernetes

Authors :
Haavisto, Juuso
Cholez, Thibault
Riekki, Jukka
Center for Ubiquitous Computing [Oulu] (UBICOMP)
University of Oulu
Resilience and Elasticity for Security and ScalabiliTy of dynamic networked systems (RESIST)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
ANR-19-CE25-0012,MOSAICO,Orchestration multi couches pour les applications à faible latence et sécurisées(2019)
Source :
35th IEEE/IFIP Network Operations and Management Symposium (NOMS 2022), 35th IEEE/IFIP Network Operations and Management Symposium (NOMS 2022), Apr 2022, Budapest, Hungary. pp.1-8, ⟨10.1109/NOMS54207.2022.9789822⟩
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

International audience; General-purpose computing on graphics processing units (GPGPU) is a promising way to speed up computationally intensive network functions, such as performing real-time traffic classification based on machine learning. Recent studies have focused on integrated graphics units and various performance optimizations to address bottlenecks such as latency. However, these approaches tend to produce architecture-specific binaries and lack the orchestration of functions. A complementary effort would be a GPGPU architecture based on standard and open components, which allows the creation of interoperable and orchestrable network functions. This study describes and evaluates such open architecture based on the cross-platform Vulkan API, in which we execute handwritten SPIR-V code as a network function. We also demonstrate a multi-node orchestration approach for our proposed architecture using Kubernetes. We validate our architecture by executing SPIR-V code performing traffic classification with random forest inference. We test this application both on discrete and integrated graphics cards and on x86 and ARM. We find that in all cases the GPUs are faster than the baseline Cython code.

Details

Database :
OpenAIRE
Journal :
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium
Accession number :
edsair.doi.dedup.....7624e42227584703e86733a82738c474