Back to Search Start Over

Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection

Authors :
Konrad Rieck
Marco Melis
Igino Corona
Ambra Demontis
Fabio Roli
Giorgio Giacinto
Daniel Arp
Battista Biggio
Davide Maiorca
Publication Year :
2019

Abstract

To cope with the increasing variability and sophistication of modern attacks, machine learning has been widely adopted as a statistically-sound tool for malware detection. However, its security against well-crafted attacks has not only been recently questioned, but it has been shown that machine learning exhibits inherent vulnerabilities that can be exploited to evade detection at test time. In other words, machine learning itself can be the weakest link in a security system. In this paper, we rely upon a previously-proposed attack framework to categorize potential attack scenarios against learning-based malware detection tools, by modeling attackers with different skills and capabilities. We then define and implement a set of corresponding evasion attacks to thoroughly assess the security of Drebin, an Android malware detector. The main contribution of this work is the proposal of a simple and scalable secure-learning paradigm that mitigates the impact of evasion attacks, while only slightly worsening the detection rate in the absence of attack. We finally argue that our secure-learning approach can also be readily applied to other malware detection tasks.<br />Accepted for publication on IEEE Transactions on Dependable and Secure Computing

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....76802186a05595c85b6aedd0393e7379