Back to Search Start Over

Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning

Authors :
Mueller, Yvonne M.
Schrama, Thijs J.
Ruijten, Rik
Schreurs, Marco W. J.
Grashof, Dwin G. B.
van de Werken, Harmen J. G.
Lasinio, Giovanna Jona
Álvarez-Sierra, Daniel
Kiernan, Caoimhe H.
Castro Eiro, Melisa D.
van Meurs, Marjan
Brouwers-Haspels, Inge
Zhao, Manzhi
Li, Ling
de Wit, Harm
Ouzounis, Christos A.
Wilmsen, Merel E. P.
Alofs, Tessa M.
Laport, Danique A.
van Wees, Tamara
Kraker, Geoffrey
Jaimes, Maria C.
Van Bockstael, Sebastiaan
Hernández-González, Manuel
Rokx, Casper
Rijnders, Bart J. A.
Pujol-Borrell, Ricardo
Katsikis, Peter D.
Universitat Autònoma de Barcelona
Institut Català de la Salut
[Mueller YM, Schrama TJ, Ruijten R, Schreurs MWJ, Grashof DGB] Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands. [van de Werken HJG] Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands. Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands. [Álvarez-Sierra D] Servei d’Immunologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain. [Hernández-González M] Servei d’Immunologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Departament de Biologia Cel•lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain. Grup de Recerca en Immunologia Translacional, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. [Pujol-Borrell R] Servei d’Immunologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Departament de Biologia Cel•lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain. Grup de Recerca en Immunologia Translacional, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
Vall d'Hebron Barcelona Hospital Campus
Immunology
Cell biology
Internal Medicine
Medical Microbiology & Infectious Diseases
Source :
Scientia, Nature Communications, 13(1):915. Nature Publishing Group, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona
Publication Year :
2021

Abstract

Applied immunology; Predictive markers; Viral infection Immunologia aplicada; Marcadors predictius; Infecció viral Inmunología aplicada; Marcadores predictivos; Infección viral Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient’s immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy. This work was supported by Health Holland LSHM20056 grant (PDK), in part from the European Union’s Horizon 2020 research and innovation program under grant agreement No 779295 (PDK), in part supported by the Erasmus foundation (BJAR), grant PI20/00416 from the Instituto de Salud Carlos III (RPB) and the European Regional Development Fund (ERDF) (RPB).

Details

ISSN :
20411723
Volume :
13
Issue :
1
Database :
OpenAIRE
Journal :
Nature communications
Accession number :
edsair.doi.dedup.....76965598bb9dae66e2a700c93f634571