Back to Search Start Over

New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal

Authors :
Nadia Mesbah
Hadia Messaoudene
Source :
Demonstratio Mathematica, Vol 54, Iss 1, Pp 311-317 (2021)
Publication Year :
2021
Publisher :
Walter de Gruyter GmbH, 2021.

Abstract

A new class of operators, larger than ∗ \ast -finite operators, named generalized ∗ \ast -finite operators and noted by Gℱ ∗ ( ℋ ) {{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ ∗ ( ℋ ) = { ( A , B ) ∈ ℬ ( ℋ ) × ℬ ( ℋ ) : ∥ T A − B T ∗ − λ I ∥ ≥ ∣ λ ∣ , ∀ λ ∈ C , ∀ T ∈ ℬ ( ℋ ) } . {{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }})=\{(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}):\parallel TA-B{T}^{\ast }-\lambda I\parallel \ge | \lambda | ,\hspace{0.33em}\forall \lambda \in {\mathbb{C}},\hspace{0.33em}\forall T\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\}. Basic properties are given. Some examples are also presented.

Details

ISSN :
23914661
Volume :
54
Database :
OpenAIRE
Journal :
Demonstratio Mathematica
Accession number :
edsair.doi.dedup.....76a3663dcbd4260bcc3a1f937576d467
Full Text :
https://doi.org/10.1515/dema-2021-0032