Back to Search Start Over

H2SO4 and Organosulfur Compounds in Laboratory Analogue Aerosols of Warm High-metallicity Exoplanet Atmospheres

Authors :
Chao He
Sarah E. Moran
Jeff A. Valenti
François-Régis Orthous-Daunay
Julianne I. Moses
Véronique Vuitton
Cédric Wolters
Laurène Flandinet
Nikole K. Lewis
Sarah M. Hörst
Institut de Planétologie et d'Astrophysique de Grenoble (IPAG)
Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)
Space Telescope Science Institute (STSci)
Johns Hopkins University (JHU)
Source :
The Planetary Science Journal, The Planetary Science Journal, IOP Science, 2021, 2, ⟨10.3847/psj/abc558⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Recent transit spectra suggest organic aerosol formation in the atmosphere of sub-Neptunes. Sulfur gases are expected to be present in warm exoplanet atmospheres with high metallicity. Many aspects of the sulfur fixation process by photochemistry in planetary atmospheres are not fully understood. In this work, tholins produced in a CO2-rich atmosphere simulation experiment with H2S were analyzed with very high-resolution mass spectrometry (HRMS) that allows for searching specific molecules in addition to providing some insight on the mixture complexity. To our knowledge, this is the first experimental investigation of sulfur-bearing organic aerosol formation from irradiation of H2S at temperatures relevant to warm exoplanets. The analysis of the mass spectra shows that the soluble organic fraction of the solid particles contains over 2500 organosulfur (CHS/CHOS/CHNS/CHNOS) molecular formulas (73% of all assigned signals) within a broad mass range (from 50 to 400 u, atomic mass unit). In particular, 14 sulfuric acid derivatives were detected and 13 unique molecular formulae that could correspond to amino acid derivatives were identified. This high molecular diversity indicates a rich and active sulfur chemistry triggered by irradiation of H2S. The average elemental composition (wt%) of the soluble fraction of the particles is 40%C, 30%O, 21%S, 6%H, and 3%N, making the sulfur abundance a factor of ∼14 larger than in the initial gas composition. Our analysis of experimental simulations shows that organosulfur species are likely an important component of the haze in exoplanet atmospheres.

Details

Language :
English
ISSN :
26323338
Database :
OpenAIRE
Journal :
The Planetary Science Journal, The Planetary Science Journal, IOP Science, 2021, 2, ⟨10.3847/psj/abc558⟩
Accession number :
edsair.doi.dedup.....770fe069f5a324af57fe4a753312f667