Back to Search Start Over

Integrating CVOR-GWLR-Circuit model into construction of ecological security pattern in Yunnan Province, China

Authors :
Lijuan Jin
Quanli Xu
Junhua Yi
Xincheng Zhong
Source :
Environmental Science and Pollution Research. 29:81520-81545
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

In the traditional construction of ecological security pattern, the minimum cost path is extracted as the ecological corridor based on the minimum cumulative resistance model, and the ecological nodes are identified manually. This method lacks the consideration of the exchange process of energy flow and information flow in the ecological process, resulting in a certain lack of ecological security pattern in structure and function. Therefore, an ecological security pattern construction method integrating CVOR-GWLR-Circuit model is proposed to solve the above problems by transforming natural background data into localized correction variables and adding them to the ecological security pattern evaluation model. Taking Yunnan Province as an example, firstly, the ecological security evaluation system of "Contribution, Vigor, Organization, Resilience" (CVOR) is constructed based on the importance of ecosystem services and ecosystem health, and the ecological security of Yunnan Province in 2020 is evaluated, and the ecological source areas are identified combined with nature reserves. Then, the ecological resistance surface was constructed by considering land use data and topographic factors, and the landslide sensitivity evaluation model was constructed based on geographically weighted logistic regression model (GWLR) to correct the basic resistance surface. Finally, the circuit theory model is used to extract the ecological corridor and construct the ecological security pattern in Yunnan Province. The ecological pinch points and barriers in the ecological corridor are diagnosed by the current density, so as to identify the width of the ecological corridor and identify the key areas of ecological protection and restoration. The results showed that the ecological sources area of Yunnan Province was about 69,417.78 km

Details

ISSN :
16147499 and 09441344
Volume :
29
Database :
OpenAIRE
Journal :
Environmental Science and Pollution Research
Accession number :
edsair.doi.dedup.....774090d80c7e6e2e979cd6b48bc96f2c