Back to Search Start Over

Lung and Gut Microbiota Changes Associated with Pseudomonas aeruginosa Infection in Mouse Models of Cystic Fibrosis

Authors :
Federica Armanini
Nicola Segata
Alessandra Bragonzi
Alessio Mengoni
Giovanni Bacci
Annamaria Bevivino
Alice Rossi
Lisa Cangioli
Ida De Fino
Bacci, G.
Rossi, A.
Armanini, F.
Cangioli, L.
De Fino, I.
Segata, N.
Mengoni, A.
Bragonzi, A.
Bevivino, A.
Source :
International Journal of Molecular Sciences, Volume 22, Issue 22, International Journal of Molecular Sciences, Vol 22, Iss 12169, p 12169 (2021)
Publication Year :
2021
Publisher :
Multidisciplinary Digital Publishing Institute, 2021.

Abstract

Cystic fibrosis (CF) disease leads to altered lung and gut microbiomes compared to healthy subjects. The magnitude of this dysbiosis is influenced by organ-specific microenvironmental conditions at different stages of the disease. However, how this gut-lung dysbiosis is influenced by Pseudomonas aeruginosa chronic infection is unclear. To test the relationship between CFTR dysfunction and gut-lung microbiome under chronic infection, we established a model of P. aeruginosa infection in wild-type (WT) and gut-corrected CF mice. Using 16S ribosomal RNA gene, we compared lung, stool, and gut microbiota of C57Bl/6 Cftr tm1UNCTgN(FABPCFTR) or WT mice at the naïve state or infected with P. aeruginosa.&nbsp<br />P. aeruginosa infection influences murine health significantly changing body weight both in CF and WT mice. Both stool and gut microbiota revealed significantly higher values of alpha diversity in WT mice than in CF mice, while lung microbiota showed similar values. Infection with P. aeruginosa did not changed the diversity of the stool and gut microbiota, while a drop of diversity of the lung microbiota was observed compared to non-infected mice.However, the taxonomic composition of gut microbiota was shown to be influenced by P. aeruginosa infection in CF mice but not in WT mice. This finding indicates that P. aeruginosa chronic infection has a major impact on microbiota diversity and composition in the lung. In the gut, CFTR genotype and P. aeruginosa infection affected the overall diversity and taxonomic microbiota composition, respectively. Overall, our results suggest a cross-talk between lung and gut microbiota in relation to P. aeruginosa chronic infection and CFTR mutation.

Details

Language :
English
ISSN :
14220067
Database :
OpenAIRE
Journal :
International Journal of Molecular Sciences
Accession number :
edsair.doi.dedup.....7749baf124308fdcd4e7dd2528337602
Full Text :
https://doi.org/10.3390/ijms222212169