Back to Search Start Over

A Comparative Study of Electrical Transport Phenomena in Ultrathin vs. Nanoscale SOI MOSFETs Devices

Authors :
A. Karsenty
A. Chelly
Publication Year :
2013
Publisher :
Zenodo, 2013.

Abstract

Ultrathin (UTD) and Nanoscale (NSD) SOI-MOSFET devices, sharing a similar W/L but with a channel thickness of 46nm and 1.6nm respectively, were fabricated using a selective “gate recessed” process on the same silicon wafer. The electrical transport characterization at room temperature has shown a large difference between the two kinds of devices and has been interpreted in terms of a huge unexpected series resistance. Electrical characteristics of the Nanoscale device, taken in the linear region, can be analytically derived from the ultrathin device ones. A comparison of the structure and composition of the layers, using advanced techniques such as Focused Ion Beam (FIB) and High Resolution TEM (HRTEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), contributes an explanation as to the difference of transport between the devices.<br />{"references": ["", "D. Esseni, P. Palestri and L. Selmi, \"Nanoscale MOS transistors, semi-classical transport and applications\", Cambridge University Press, 2011.", "A. Karsenty, A. Sa'ar, N. Ben-Yosef, and J. Shappir, \"Enhanced electroluminescence in silicon-on-insulator metal-oxide-semiconductor transistors with thin silicon layer\", Appl. Phys. Lett., 82, 4830 (2003).", "D. Abraham, A. Chelly, D. Elbaz, S. Schiff, M. Nabozny, and Z. Zalevsky, \"Modeling of Current-Voltage Characteristics of the Photoactivated Device Based on SOI Technology\", Active and Passive Electronic Components, vol. 2012, Article ID 276145, 7 pages, 2012.", "M. Chan, F. Assaderaghi, S. A. Parke, S. S.Yuen, C. Hu, and P. K. Ko, \"Recess channel structure for reducing source/drain series resistance in ultra-thin SOI MOSFETs\", Proc. IEEE Int. SOI Conf.,Oct.1993, pp.172\u2013173.", "S. Cristaloveanu and S. S. Li, \"Methods of Forming SOI Wafers - Electrical Characterization of S.O.I. Material and Devices\", Kluwer Academic Publishers, Chapter 2, p. 7-15, 1995.", "S. Cristoloveanu, Status, \"Trends and Challenges of Silicon-on-Insulator Technology - SOI: A Metamorphosis of Silicon\", IEEE Circuits & Devices, p. 26-32, January 1999.", "M. Bruel, B. Aspar, B. Charlet, C. Maleville, T. Poumeyrol, A. Soubie, A.-J. Auberton-Herve, J. M. Lamure, T. Barge, F. Metral, and S. Trucchi, \"SMART CUT: A Promising New SOI Material Technology\", Proceedings 1995 IEEE International Conference, p. 178-179, October 1995.", "B. Dance, \"European SOI Comes of Age, Semiconductor International\", p. 83-90, November 1994.", "L. Peters, \"SOI Takes Over Where Silicon Leaves Off\", Semiconductor International, March 1993.\n[10] M. Alles and S. Wilson, \"Thin Film Silicon on Insulator: An Enabling Technology\", Semiconductor International, April 1997.\n[11] A. J. Auberton-Herve and Tadashi Nishimura, \"SOI-based devices: Status Overview\", Solid State Technology, July 1994.\n[12] A. J. Auberton-Herve, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, and J. L. Pelloie, \"SOI Materials for ULSI Applications\", Semiconductor International, p.97-104, October 1995.\n[13] T. E. Thompson, \"SOI sandwich promises fast, low-power ICs\", Electronic Business Today, p. 43-47, October 1995.\n[14] J. Rhea, \"DARPA low power program aims at mobile applications\", Military & Aerospace Electronics, July 1996.\n[15] P. H. Singer, \"U. S. Chipmakers: Penny-Wise, Million-Dollar Foolish\", Semiconductor International, August 1995.\n[16] M. Bruel, B. Aspar, B. Charlet, C. Maleville, T. Poumeyrol, A. Soubie, A.-J. Auberton-Herve, J. M. Lamure, T. Barge, F. Metral, and S. Trucchi, \"SMART CUT \u00ae: A Promising New SOI Material Technology\", Proceedings 1995 IEEE International Conference, p. 178-179, October 1995.\n[17] B. Aspar, C. Pudda, A. M. Papon, A.J. Auberton-Herve, and J. M. Lamure, \"Ultra-thin buried oxide layers formed by low dose SIMOX processes\", The Electrochemical Society: proceedings, Vol. 94, No. 11, p. 62, abstract 541 Silicon On Insulator Technology and Devices edited by S. Cristoloveanu.\n[18] R. Datta, L. P. Allen, R. P. Dolan, K. S. Jones, and M. Farley, \"Independent implant parameter effects on SIMOX SOI dislocation formation\", Materials Science & Engineering B, Vol. 46, Elsevier Science publications p. 8-13, 1997.\n[19] V. V. Afanas'ev, G. A. Brown, H. L. Hughes, S. T. Liu, and A. G. Revesz, \"Conducting and Charge-Trapping Defects in Buried Oxide Layers of SIMOX Structures\", J. Electrochem. Soc., Vol. 143, No. 1, p. 347-352, January 1996.\n[20] A. Karsenty, A. Chelly, \"Modeling the Transfer Characteristics for High Series Resistance Nanoscale Silicon-On-Insulator (SOI) MOSFETs\", Appl. Phys. Lett., submitted for publication.\n[21] A. Karsenty, \"Study of the Electrical and Electro-Optical Phenomena in Thin SOI MOS Transistors\", PhD Thesis, Hebrew University Of Jerusalem, May 2003.\n[22] L. Do Thanh and P. Balk, \"Elimination and Generation of Si-SiO2 Interface Traps by Low Temperature Hydrogen Annealing\", J. Electrochem. Soc., Vol. 135, No. 7, p. 1797-1801, July 1988.\n[23] S. Cristoloveanu and T. Ouisse, \"The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2\", edited by C.R. Helms and B.E. Deal Plenum Press New York, p. 309-318, 1993.\n[24] V. V. Afanas'ev, A. G. Revesz, and H. L. Hughes, \"Confinement Phenomena in Buried Oxides of SIMOX Structures as Affected by Processing\", J. Electrochem. Soc., Vol. 143, No. 2, p. 695-700, February 1996.\n[25] J. Wan, C. Le Royer, A. Zaslavsky, S. Cristoloveanu, \"Gate-induced drain leakage in FD-SOI devices: What the TFET teaches us about the MOSFET\", Microelectronic Engineering, Volume 88, issue 7, July 2011, Pages 1301-1304.\n[26] J. Wang, N. Kistler, J. Woo, and C. R. Viswanathan, \"Mobility-field behavior of fully depleted SOI MOSFET's\", IEEE Electron Device Lett. 15, 117 (1994).\n[27] D. Esseni, M. Mastrapasqua, G.K. Celler, C. Fiegna, L. Selmi, and E. Sangiorgi, \"Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicrometer technology application\", IEEE Electron Device Lett. 48, 2842 (2001).\n[28] K. Uchida and S. Takagi, \"Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal\u2013oxide\u2013semiconductor field-effect transistors\", Appl. Phys. Lett. 82, 2916 (2003).\n[29] T. Ernst, S. Cristoloveanu, G. Ghibaudo, T.Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi and K. Murase, \"Ultimately thin double-gate SOI MOSFETs\", IEEE Trans. Electron Devices ED-50, 3 (2003).\n[30] Y. Omura, S. Horiguchi, M. Tabe and K. Kishi, \"Quantum-Mechanical Effects on the Threshold Voltage of Ultathin-SOI nMOSFET's\", IEEE Electron Device Lett. 14, 569 (1993).\n[31] J. H. Choi, Y.J. Park and H.S. Min, \"Electron mobility behavior in extremely thin SOI technology with MOSFETs\", IEEE Electron Device Lett. 16, 527 (1995).\n[32] M. Schmidt, M.C. Lemm. H.D.B. Gottlob, F. Driussi, L.Selmi and H. Kurz, \"Mobility extraction in SOI MOSFETs with sub 1 nm body thickness\", Solid State Electronics 53, 1246 (2009).\n[33] K. Lee, M. Shur and T. A. Fjeldly, \"Semiconductor device modeling for VLSI\", Prentice Hall 244 (1993).\n[34] K. K. NG and W. T. Lynch, "Analysis of the gate-voltage-dependent series resistance of MOSFET's", IEEE Trans. Electron Devices ED-33, 7 (1986)."]}

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....774caf8aa7cadf9e87903dd1dd3fc174
Full Text :
https://doi.org/10.5281/zenodo.1088906