Back to Search Start Over

Infection of Glia by Human Pegivirus Suppresses Peroxisomal and Antiviral Signaling Pathways

Authors :
William G. Branton
F K H van Landeghem
M Smith
Gregg Blevins
Matthew A. L. Doan
Benjamin B. Gelman
Jack T. Stapleton
Tom C. Hobman
A Roczkowsky
Christopher Power
Source :
J Virol
Publication Year :
2021
Publisher :
American Society for Microbiology, 2021.

Abstract

Human pegivirus (HPgV) infects peripheral leukocytes but was recently shown to be a neurotropic virus associated with leukoencephalitis in humans. In the present study, we investigated the neural cell tropism of HPgV as well as its effects on host immune responses. HPgV wild type (WT) as well as a mutant virus with a deletion in the HPgV NS2 gene (ΔNS2) were able to productively infect human astrocytes and microglia but not neurons or an oligodendrocyte-derived cell line. Of note, the ΔNS2 virus replicated better than WT pegivirus in astrocytes with both viruses being able to subsequently infect and spread in fresh human astrocyte cultures. Infection of human glia by HPgV WT and ΔNS2 viruses resulted in suppression of peroxisome-associated genes including PEX11B, ABCD1, PEX7, ABCD3, PEX3 and PEX5L during peak viral production, which was accompanied by reduced expression of IFNB, IRF3, IRF1, and MAVS, particularly in ΔNS2-infected cells. These data were consistent with analyses of brain tissue from patients infected with HPgV in which we observed suppression of peroxisome and type I interferon gene transcripts including PEX11B, ABCD3, IRF1, and IRF3 with concurrent loss of PMP70 immunoreactivity in glia. Our data indicate that human astrocytes and microglia are permissive to HPgV infection resulting in peroxisome injury and suppressed antiviral signaling that is influenced by viral diversity. Importance: Human pegiviruses are detected in 1-5% of the general population, principally infecting leukocytes, although their effects on human health remain uncertain. Herein, we show that human pegivirus infects specific neural cell types in culture and human brain and like other neurotropic flaviviruses, it causes suppression of peroxisome and antiviral signalling pathways, which could favour ongoing viral infection and perhaps confer susceptibility to the development of neurological disease.

Details

ISSN :
10985514 and 0022538X
Volume :
95
Database :
OpenAIRE
Journal :
Journal of Virology
Accession number :
edsair.doi.dedup.....778d2ace8f5195b1a962ba0336b0fb06
Full Text :
https://doi.org/10.1128/jvi.01074-21