Back to Search Start Over

Isolated Handwritten Pashto Character Recognition Using a K-NN Classification Tool based on Zoning and HOG Feature Extraction Techniques

Authors :
Sulaiman Khan
Juanjuan Huang
Chaolan Dai
Ihtisham Ul Haq
Shah Nazir
Muhammad Imtiaz
Source :
Complexity, Vol 2021 (2021)
Publication Year :
2021
Publisher :
Hindawi Limited, 2021.

Abstract

Handwritten text recognition is considered as the most challenging task for the research community due to slight change in different characters’ shape in handwritten documents. The unavailability of a standard dataset makes it vaguer in nature for the researchers to work on. To address these problems, this paper presents an optical character recognition system for the recognition of offline Pashto characters. The problem of the unavailability of a standard handwritten Pashto characters database is addressed by developing a medium-sized database of offline Pashto characters. This database consists of 11352 character images (258 samples for each 44 characters in a Pashto script). Enriched feature extraction techniques of histogram of oriented gradients and zoning-based density features are used for feature extraction of carved Pashto characters. K-nearest neighbors is considered as a classification tool for the proposed algorithm based on the proposed feature sets. A resultant accuracy of 80.34% is calculated for the histogram of oriented gradients, while for zoning-based density features, 76.42% is achieved using 10-fold cross validation.

Details

ISSN :
10990526 and 10762787
Volume :
2021
Database :
OpenAIRE
Journal :
Complexity
Accession number :
edsair.doi.dedup.....77d41833d760c86d374094bbb1bd22cf