Back to Search
Start Over
Deep neural network for the dielectric response of insulators
- Source :
- Physical Review B. 102
- Publication Year :
- 2020
- Publisher :
- American Physical Society (APS), 2020.
-
Abstract
- Fully anharmonic calculations of the dielectric response of insulators require costly $a\phantom{\rule{0}{0ex}}b$ $i\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}o$ molecular dynamics simulations. Here, the authors show that this electronic response property can be described efficiently by a deep neural network that retains the accuracy of $a\phantom{\rule{0}{0ex}}b$ $i\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}o$ molecular dynamics. The scheme is demonstrated with calculations of the infrared absorption spectrum of liquid water at standard conditions, and of the evolution of the spectrum of crystalline ice undergoing a pressure-induced structural transformation from molecular ice VII to ionic ice X.
- Subjects :
- Chemical Physics (physics.chem-ph)
Physics
Condensed Matter - Materials Science
Liquid water
Spectrum (functional analysis)
Anharmonicity
Materials Science (cond-mat.mtrl-sci)
FOS: Physical sciences
02 engineering and technology
Computational Physics (physics.comp-ph)
021001 nanoscience & nanotechnology
01 natural sciences
Dielectric response
Molecular physics
Structural transformation
Imaging phantom
Ice VII
Physics - Chemical Physics
0103 physical sciences
010306 general physics
0210 nano-technology
Physics - Computational Physics
Subjects
Details
- ISSN :
- 24699969 and 24699950
- Volume :
- 102
- Database :
- OpenAIRE
- Journal :
- Physical Review B
- Accession number :
- edsair.doi.dedup.....77faa46f086e8946748462d8b44b2a46
- Full Text :
- https://doi.org/10.1103/physrevb.102.041121