Back to Search Start Over

A Bayesian Framework to Identify Type 1 Diabetes Physiological Models Using Easily Accessible Patient Data

Authors :
Andrea Facchinetti
Giovanni Sparacino
Simone Del Favero
Giacomo Cappon
Source :
EMBC
Publication Year :
2020

Abstract

Mathematical physiological models of type 1 diabetes (T1D) glucose-insulin dynamics have been of great help in designing and preliminary assessing new algorithm for glucose control. Derivation of models at the individual level is however difficult because of identifiability issues. Recently, fitting these models against data of real patients with T1D has been made possible by both the use of Bayesian estimation techniques and the availability of individual datasets including plasma glucose and insulin concentration samples gathered in clinical protocols. The aim of this work is to make a step further and develop a methodology able to estimate the parameters of T1D physiological models using easily accessible data only, i.e. continuous glucose monitoring (CGM) sensor, carbohydrate intakes (CHO), and exogenous insulin infusion (I) data. The methodology is tested on synthetic data of 100 patients generated by a composite model of glucose-insulin dynamics. To solve identifiability problems, a Bayesian approach numerically implemented by Markov Chain Monte Carlo (MCMC) has been used to obtain point estimates and confidence intervals of model unknown parameters exploiting a priori knowledge available from the literature. Results show goodness of model fit and acceptable precision of parameter estimates. The methodology is also successful in reconstructing of "non-accessible" glucose-insulin fluxes, i.e. glucose rate of appearance and plasma insulin. These preliminary results encourage further development of this framework and its assessment in more challenging setups.

Details

ISSN :
26940604
Volume :
2019
Database :
OpenAIRE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Accession number :
edsair.doi.dedup.....7800882392985ead15f36795374a1a32