Back to Search Start Over

Kinetic Monte Carlo simulation of random deposition and scaling behavior with respect to the germination length

Authors :
Linda Aissani
Grégoire Sorba
Abdenour Saoudi
Francisco Chinesta
Universite Abbes Laghrour [Khenchela]
École Supérieure des Techniques Aéronautiques et de Construction Automobile (ESTACA)
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)
ESI Group (ESI Group)
Source :
International Journal of Computational Materials Science and Engineering, International Journal of Computational Materials Science and Engineering, World Scientific Publishing Co Pte Ltd, 2021, 09 (04), pp.2050022. ⟨10.1142/s2047684120500220⟩
Publication Year :
2021
Publisher :
World Scientific Pub Co Pte Lt, 2021.

Abstract

International audience; This work aims at analyzing the scaling behavior and develop correlations during surface growing for different germination lengths. The surface growing by random deposition is simulated using a kinetic Monte Carlo approach, by considering different germination lengths. Different surface descriptors are extracted, among them the roughness and the correlation. The former allows extracting the scaling behavior, while the latter proves the existence of correlations independent of the system size but dependent on the germination length. Moreover, as in the case of random deposition with a null germination length, the growing roughness never saturates.

Details

Language :
English
ISSN :
20476841 and 2047685X
Database :
OpenAIRE
Journal :
International Journal of Computational Materials Science and Engineering, International Journal of Computational Materials Science and Engineering, World Scientific Publishing Co Pte Ltd, 2021, 09 (04), pp.2050022. ⟨10.1142/s2047684120500220⟩
Accession number :
edsair.doi.dedup.....78894c73ea4114a27b58e39169ad22e3
Full Text :
https://doi.org/10.1142/s2047684120500220⟩