Back to Search
Start Over
Large regenerative parametric amplification on chip at ultra-low pump powers
- Publication Year :
- 2022
-
Abstract
- Chip-based optical amplifiers can significantly expand the functionalities of photonic devices. In particular, optical-parametric amplifiers (OPAs), with engineerable gain-spectra, are well-suited for nonlinear-photonic applications. Chip-based OPAs typically require long waveguides that occupy a large footprint, and high pump powers that cannot be easily produced with chip-scale lasers. We theoretically and experimentally demonstrate a microresonator-assisted regenerative OPA that benefits from the large nonlinearity enhancement of microresonators and yields a high gain in a small footprint. We achieve 30-dB parametric gain with only 9 mW of cw-pump power and show that the gain spectrum can be engineered to cover telecom channels inaccessible with Er-based amplifiers. We further demonstrate the amplification of Kerr-soliton comb lines and the preservation of their phase properties. Additionally, we demonstrate amplification by injection locking of optical-parametric oscillators, which corresponds to a regenerative amplifier pumped above the oscillation threshold. Novel dispersion engineering techniques such as coupled cavities and higher-order-dispersion phase matching can further extend the tunability and spectral coverage of our amplification schemes. The combination of high gain, small footprint, low pump power, and flexible gain-spectra engineering of our regenerative OPA is ideal for amplifying signals from the nanowatt to microwatt regimes for portable or space-based devices where ultralow electrical power levels are required and can lead to important applications in on-chip optical- and microwave-frequency synthesis and precise timekeeping.<br />16 pages, 10 figures
- Subjects :
- FOS: Physical sciences
Optics (physics.optics)
Physics - Optics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....78a5dbbe3c6c419db86008c8022f4352