Back to Search
Start Over
A PDX1-ATF transcriptional complex governs β cell survival during stress
- Source :
- Molecular Metabolism, Molecular Metabolism, Vol 17, Iss, Pp 39-48 (2018)
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Objective Loss of insulin secretion due to failure or death of the insulin secreting β cells is the central cause of diabetes. The cellular response to stress (endoplasmic reticulum (ER), oxidative, inflammatory) is essential to sustain normal β cell function and survival. Pancreatic and duodenal homeobox 1 (PDX1), Activating transcription factor 4 (ATF4), and Activating transcription factor 5 (ATF5) are transcription factors implicated in β cell survival and susceptibility to stress. Our goal was to determine if a PDX1-ATF transcriptional complex or complexes regulate β cell survival in response to stress and to identify direct transcriptional targets. Methods Pdx1, Atf4 and Atf5 were silenced by viral delivery of gRNAs or shRNAs to Min6 insulinoma cells or primary murine islets. Gene expression was assessed by qPCR, RNAseq analysis, and Western blot analysis. Chromatin enrichment was measured in the Min6 β cell line and primary isolated mouse islets by ChIPseq and ChIP PCR. Immunoprecipitation was used to assess interactions among transcription factors in Min6 cells and isolated mouse islets. Activation of caspase 3 by immunoblotting or by irreversible binding to a fluorescent inhibitor was taken as an indication of commitment to an apoptotic fate. Results RNASeq identified a set of PDX1, ATF4 and ATF5 co-regulated genes enriched in stress and apoptosis functions. We further identified stress induced interactions among PDX1, ATF4, and ATF5. PDX1 chromatin occupancy peaks were identified over composite C/EBP-ATF (CARE) motifs of 26 genes; assessment of a subset of these genes revealed co-enrichment for ATF4 and ATF5. PDX1 occupancy over CARE motifs was conserved in the human orthologs of 9 of these genes. Of these, Glutamate Pyruvate Transaminase 2 (Gpt2), Cation transport regulator 1 (Chac1), and Solute Carrier Family 7 Member 1 (Slc7a1) induction by stress was conserved in human islets and abrogated by deficiency of Pdx1, Atf4, and Atf5 in Min6 cells. Deficiency of Gpt2 reduced β cell susceptibility to stress induced apoptosis in both Min6 cells and primary islets. Conclusions Our results identify a novel PDX1 stress inducible complex (es) that regulates expression of stress and apoptosis genes to govern β cell survival.<br />Graphical abstract Image 1<br />Highlights • PDX1 binds to composite CEBP/ATF (CARE) sites of stress and apoptosis genes. • A novel stress inducible transcriptional complex involving PDX1, ATF4, and ATF5 is discovered. • Novel stress induced targets of the complex involved in fate decisions are identified. • Silencing of one of these targets, Gpt2, protects β cells from apoptosis due to stress.
- Subjects :
- Male
0301 basic medicine
lcsh:Internal medicine
endocrine system
endocrine system diseases
Cell Survival
Activating transcription factor
β cell
Apoptosis
Activating Transcription Factor 4
Stress
Endoplasmic Reticulum
digestive system
Mice
03 medical and health sciences
Transcriptional regulation
Stress, Physiological
Cell Line, Tumor
Insulin-Secreting Cells
Insulin Secretion
Gene expression
Diabetes Mellitus
Animals
lcsh:RC31-1245
Pancreas
Molecular Biology
Transcription factor
Homeodomain Proteins
2. Zero hunger
030102 biochemistry & molecular biology
Chemistry
Genes, Homeobox
Cell Biology
Activating Transcription Factors
3. Good health
Chromatin
Cell biology
Disease Models, Animal
030104 developmental biology
Gene Expression Regulation
Trans-Activators
PDX1
Original Article
Transcriptome
Cation transport
Subjects
Details
- ISSN :
- 22128778
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- Molecular Metabolism
- Accession number :
- edsair.doi.dedup.....792a047ee809ef07732f2ef3cbc8ded1
- Full Text :
- https://doi.org/10.1016/j.molmet.2018.07.007