Back to Search
Start Over
Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
- Source :
- Journal of chemical information and modeling 60 (2020): 5832–5852. doi:10.1021/acs.jcim.0c01010, info:cnr-pdr/source/autori:Acharya A.; Agarwal R.; Baker M.B.; Baudry J.; Bhowmik D.; Boehm S.; Byler K.G.; Chen S.Y.; Coates L.; Cooper C.J.; Demerdash O.; Daidone I.; Eblen J.D.; Ellingson S.; Forli S.; Glaser J.; Gumbart J.C.; Gunnels J.; Hernandez O.; Irle S.; Kneller D.W.; Kovalevsky A.; Larkin J.; Lawrence T.J.; Legrand S.; Liu S.-H.; Mitchell J.C.; Park G.; Parks J.M.; Pavlova A.; Petridis L.; Poole D.; Pouchard L.; Ramanathan A.; Rogers D.M.; Santos-Martins D.; Scheinberg A.; Sedova A.; Shen Y.; Smith J.C.; Smith M.D.; Soto C.; Tsaris A.; Thavappiragasam M.; Tillack A.F.; Vermaas J.V.; Vuong V.Q.; Yin J.; Yoo S.; Zahran M.; Zanetti-Polzi L./titolo:Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19/doi:10.1021%2Facs.jcim.0c01010/rivista:Journal of chemical information and modeling/anno:2020/pagina_da:5832/pagina_a:5852/intervallo_pagine:5832–5852/volume:60, Journal of Chemical Information and Modeling, ChemRxiv, article-version (number) 1, article-version (status) pre
- Publication Year :
- 2020
- Publisher :
- American Chemical Society, Washington, D.C. , Stati Uniti d'America, 2020.
-
Abstract
- We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.
- Subjects :
- Enhanced sampling
Computer science
Protein Conformation
General Chemical Engineering
Drug Evaluation, Preclinical
Viral Nonstructural Proteins
Replica exchange
01 natural sciences
Molecular Docking Simulation
Molecular dynamics
010304 chemical physics
Drug discovery
AutoDock
Supercomputer
Supercomputers
Preclinical
Spike Glycoprotein
Computer Science Applications
Spike Glycoprotein, Coronavirus
Coronavirus disease 2019 (COVID-19)
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Chemical
Library and Information Sciences
Antiviral Agents
Article
Autodock vina
Computational science
Databases
Structure-Activity Relationship
Artificial Intelligence
0103 physical sciences
Humans
Computer Simulation
Binding Sites
SARS-CoV-2
COVID-19
Proteins
General Chemistry
0104 chemical sciences
COVID-19 Drug Treatment
Coronavirus
010404 medicinal & biomolecular chemistry
Massively parallel supercomputing
Docking (molecular)
Drug Design
Drug Evaluation
Databases, Chemical
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Journal of chemical information and modeling 60 (2020): 5832–5852. doi:10.1021/acs.jcim.0c01010, info:cnr-pdr/source/autori:Acharya A.; Agarwal R.; Baker M.B.; Baudry J.; Bhowmik D.; Boehm S.; Byler K.G.; Chen S.Y.; Coates L.; Cooper C.J.; Demerdash O.; Daidone I.; Eblen J.D.; Ellingson S.; Forli S.; Glaser J.; Gumbart J.C.; Gunnels J.; Hernandez O.; Irle S.; Kneller D.W.; Kovalevsky A.; Larkin J.; Lawrence T.J.; Legrand S.; Liu S.-H.; Mitchell J.C.; Park G.; Parks J.M.; Pavlova A.; Petridis L.; Poole D.; Pouchard L.; Ramanathan A.; Rogers D.M.; Santos-Martins D.; Scheinberg A.; Sedova A.; Shen Y.; Smith J.C.; Smith M.D.; Soto C.; Tsaris A.; Thavappiragasam M.; Tillack A.F.; Vermaas J.V.; Vuong V.Q.; Yin J.; Yoo S.; Zahran M.; Zanetti-Polzi L./titolo:Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19/doi:10.1021%2Facs.jcim.0c01010/rivista:Journal of chemical information and modeling/anno:2020/pagina_da:5832/pagina_a:5852/intervallo_pagine:5832–5852/volume:60, Journal of Chemical Information and Modeling, ChemRxiv, article-version (number) 1, article-version (status) pre
- Accession number :
- edsair.doi.dedup.....79326e7712c0be5402b46e8c6ef2b9fd
- Full Text :
- https://doi.org/10.1021/acs.jcim.0c01010