Back to Search
Start Over
Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy
- Source :
- Journal of petrology, 2018, Vol.59(12), pp.2463-2492 [Peer Reviewed Journal]
- Publication Year :
- 2018
- Publisher :
- Oxford University Press, 2018.
-
Abstract
- Volatile elements play an important role in many aspects of the physicochemical architecture of sub-volcanic plumbing systems, from the liquid line of descent to the dynamics of magma storage and eruption. However, it remains difficult to constrain the behaviour of magmatic volatiles on short timescales before eruption using established petrologic techniques (e.g. melt inclusions), specifically, in the final days to months of magma storage. This study presents a detailed model of pre-eruptive volatile behaviour in the Campi Flegrei system (Italy), through combined analyses of apatite crystals and glass. The deposits of eight eruptions were examined, covering the full spectrum of melt compositions, eruptive styles and periods of activity at Campi Flegrei in the past 15 kyr. Measured apatite compositions are compared with thermodynamic models that predict the evolution of the crystal compositions during different fractional crystallisation scenarios, including: (i) volatile-undersaturated conditions; (ii) H2O-saturated conditions; (iii) varying P-T conditions. The compositions of clinopyroxene-hosted and biotite-hosted apatite inclusions are consistent with crystallisation under volatile-undersaturated conditions that persisted until late in magmatic evolution. Apatite microphenocrysts show significantly more compositional diversity, interpreted to reflect a mixed cargo of crystals derived from volatile-undersaturated melts at depth and melts which have undergone cooling and degassing in discrete shallow-crustal magma bodies. Apatite microphenocrysts from lavas show some re-equilibration during cooling at the surface. Clinopyroxene-hosted melt inclusions within the samples typically contain 2-4 wt % H2O, indicating that they have been reset during temporary magma storage at 1-3 km depth, similar to the depth of sill emplacement during recent seismic crises at Campi Flegrei. Comparable apatite compositional trends are identified in each explosive eruption analysed, regardless of volume, composition or eruption timing. However, apatites from the different epochs of activity appear to indicate subtle changes in the H2O content of the parental melt feeding the Campi Flegrei system over time. This study demonstrates the potential utility of integrated apatite and glass analysis for investigating pre-eruptive volatile behaviour in apatite-bearing magmas.
- Subjects :
- 010504 meteorology & atmospheric sciences
Volatile behaviour
sub-05
melt inclusions
010502 geochemistry & geophysics
thermodynamic modelling
01 natural sciences
Apatite
Sill
Geochemistry and Petrology
Petrology
Volatiles
0105 earth and related environmental sciences
Melt inclusions
geography
geography.geographical_feature_category
Explosive eruption
volatiles
Geophysics
Volcano
apatite
visual_art
Magma
visual_art.visual_art_medium
Campi Flegrei
Geology
Subjects
Details
- ISSN :
- 00223530
- Database :
- OpenAIRE
- Journal :
- Journal of petrology, 2018, Vol.59(12), pp.2463-2492 [Peer Reviewed Journal]
- Accession number :
- edsair.doi.dedup.....793c46e749d50bdf149a80acc0390a09
- Full Text :
- https://doi.org/10.1093/petrology/egy020