Back to Search Start Over

Sequence- and seed-structure-dependent polymorphic fibrils of alpha-synuclein

Authors :
Naoko Kajimura
Nobuyuki Nukina
Kaoru Mitsuoka
Yoshiaki Furukawa
Tomoyuki Yamanaka
Goki Tanaka
Source :
Biochimica et biophysica acta. Molecular basis of disease. 1865(6)
Publication Year :
2018

Abstract

Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.

Details

ISSN :
1879260X
Volume :
1865
Issue :
6
Database :
OpenAIRE
Journal :
Biochimica et biophysica acta. Molecular basis of disease
Accession number :
edsair.doi.dedup.....796f4c711934cc7a1a0400e8527b0de6