Back to Search Start Over

Accounting for uncertain fault geometry in earthquake source inversions – II: application to the Mw 6.2 Amatrice earthquake, central Italy

Authors :
Théa Ragon
Mark Simons
Anthony Sladen
Géoazur (GEOAZUR 7329)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
Division of Geological and Planetary Sciences [Pasadena]
California Institute of Technology (CALTECH)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur
Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)
Source :
Geophysical Journal International, Geophysical Journal International, Oxford University Press (OUP), 2019, 218 (1), pp.689-707. ⟨10.1093/gji/ggz180⟩, Geophysical Journal International, 2019, 218 (1), pp.689-707. ⟨10.1093/gji/ggz180⟩
Publication Year :
2019
Publisher :
Oxford University Press (OUP), 2019.

Abstract

SUMMARY Our understanding of earthquake sources is limited by the availability and the quality of observations and the fidelity of our physical models. Uncertainties in our physical models will naturally bias our inferences of subsurface fault slip. These uncertainties will always persist to some level as we will never have a perfect knowledge of the Earth’s interior. The choice of the forward physics is thus ambiguous, with the frequent need to fix the value of several parameters such as crustal properties or fault geometry. Here, we explore the impact of uncertainties related to the choice of both fault geometry and elastic structure, as applied to the 2016 Mw 6.2 Amatrice earthquake, central Italy. This event, well instrumented and characterized by a relatively simple fault morphology, allows us to explore the role of uncertainty in basic fault parameters, such as fault dip and position. We show that introducing uncertainties in fault geometry in a static inversion reduces the sensitivity of inferred models to different geometric assumptions. Accounting for uncertainties thus helps infer more realistic and robust slip models. We also show that uncertainties in fault geometry and Earth’s elastic structure significantly impact estimated source models, particularly if near-fault observations are available.

Details

ISSN :
1365246X and 0956540X
Volume :
218
Database :
OpenAIRE
Journal :
Geophysical Journal International
Accession number :
edsair.doi.dedup.....799267574e1ec6eacd3a80586e0a221a