Back to Search
Start Over
Heterogeneous fractionation profiles of meta-analytic coactivation networks
- Source :
- NeuroImage
- Publication Year :
- 2017
- Publisher :
- Elsevier, 2017.
-
Abstract
- Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication.
- Subjects :
- QA75
Databases, Factual
Computer science
Cognitive Neuroscience
Models, Neurological
Fractionation
Network topology
Article
050105 experimental psychology
03 medical and health sciences
0302 clinical medicine
Spatial network
Neuroimaging
Neural Pathways
medicine
Cluster Analysis
Data Mining
Humans
0501 psychology and cognitive sciences
Brain Mapping
business.industry
05 social sciences
Brain
Contrast (statistics)
Neuroinformatics
Human brain
Independent component analysis
Hierarchical clustering
medicine.anatomical_structure
Neurology
RC0321
Artificial intelligence
Biological system
business
030217 neurology & neurosurgery
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- NeuroImage
- Accession number :
- edsair.doi.dedup.....79e23af3efe4b5a86f7b6000ef144253