Back to Search Start Over

Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts

Authors :
Giovanni Montana
Yik Ying Teo
Ching-Yu Cheng
Matt J. Silver
Ruoying Li
E-Shyong Tai
Peng Chen
Tien Yin Wong
Source :
PLoS Genetics, Vol 9, Iss 11, p e1003939 (2013), PLoS Genetics
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function.<br />Author Summary Genes do not act in isolation, but interact in complex networks or pathways. By accounting for such interactions, pathways analysis methods hope to identify aspects of a disease or trait's genetic architecture that might be missed using more conventional approaches. Most existing pathways methods take a univariate approach, in which each variant within a pathway is separately tested for association with the phenotype of interest. These statistics are then combined to assess pathway significance. As a second step, further analysis can reveal important genetic variants within significant pathways. We have previously shown that a joint-modelling approach using a sparse regression model can increase the power to detect pathways influencing a quantitative trait. Here we extend this approach, and describe a method that is able to simultaneously identify pathways and genes that may be driving pathway selection. We test our method using simulations, and apply it to a study searching for pathways and genes associated with high-density lipoprotein cholesterol in two separate East Asian cohorts.

Details

Language :
English
ISSN :
15537404 and 15537390
Volume :
9
Issue :
11
Database :
OpenAIRE
Journal :
PLoS Genetics
Accession number :
edsair.doi.dedup.....7a0132c4f46bbf5a4b97380cb1bd999b