Back to Search
Start Over
Hyers-Ulam stability of an additive-quadratic functional equation
- Source :
- Cubo, Vol 22, Iss 2, Pp 233-255 (2020), Cubo (Temuco) v.22 n.2 2020, SciELO Chile, CONICYT Chile, instacron:CONICYT
- Publication Year :
- 2020
- Publisher :
- Universidad de La Frontera, 2020.
-
Abstract
- In this paper, we introduce the following \((a,b,c)\)-mixed type functional equation of the form \(g(ax_1+bx_2+cx_3 )-g(-ax_1+bx_2+cx_3 ) + g(ax_1-bx_2+cx_3 )\)\(-g(ax_1+bx_2-cx_3 ) + 2a^2 [g(x_1 ) + g(-x_1)] + 2b^2 [g(x_2 ) + g(-x_2)] + \)\(2c^2 [g(x_3 ) + g(-x_3)]+a[g(x_1 ) - g(-x_1)]+ b[g(x_2 )-g(-x_2)] + \) \(c[g(x_3 )-g(-x_3)]=4g(ax_1+cx_3 )+2g(-bx_2)+\) \(2g(bx_2)\) where \(a,b,c\) are positive integers with \(a>1\), and investigate the solution and the Hyers-Ulam stability of the above functional equation in Banach spaces by using two different methods.
- Subjects :
- Physics
Mathematics::Functional Analysis
Banach space
Algebra and Number Theory
Logic
hyers-ulam stability
lcsh:Mathematics
Type (model theory)
lcsh:QA1-939
Combinatorics
fixed point
mixed type functional equation
Functional equation
Hyers-Ulam stability
Geometry and Topology
banach space
Analysis
Quadratic functional
Subjects
Details
- ISSN :
- 07190646
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Cubo (Temuco)
- Accession number :
- edsair.doi.dedup.....7a0e0885d350b5fdc93bafddb9cc1bb0
- Full Text :
- https://doi.org/10.4067/s0719-06462020000200233