Back to Search
Start Over
Fast plasmid based protein expression analysis in insect cells using an automated SplitGFP screen
- Source :
- Biotechnology and Bioengineering
- Publication Year :
- 2015
-
Abstract
- Recombinant protein expression often presents a bottleneck for the production of proteins for use in many areas of animal‐cell biotechnology. Difficult‐to‐express proteins require the generation of numerous expression constructs, where popular prokaryotic screening systems often fail to identify expression of multi domain or full‐length protein constructs. Post‐translational modified mammalian proteins require an alternative host system such as insect cells using the Baculovirus Expression Vector System (BEVS). Unfortunately this is time‐, labor‐, and cost‐intensive. It is clearly desirable to find an automated and miniaturized fast multi‐sample screening method for protein expression in such systems. With this in mind, in this paper a high‐throughput initial expression screening method is described using an automated Microcultivation system in conjunction with fast plasmid based transient transfection in insect cells for the efficient generation of protein constructs. The applicability of the system is demonstrated for the difficult to express Nucleotide‐binding Oligomerization Domain‐containing protein 2 (NOD2). To enable detection of proper protein expression the rather weak plasmid based expression has been improved by a sensitive inline detection system. Here we present the functionality and application of the sensitive SplitGFP (split green fluorescent protein) detection system in insect cells. The successful expression of constructs is monitored by direct measurement of the fluorescence in the BioLector Microcultivation system. Additionally, we show that the results obtained with our plasmid‐based SplitGFP protein expression screen correlate directly to the level of soluble protein produced in BEVS. In conclusion our automated SplitGFP screen outlines a sensitive, fast and reliable method reducing the time and costs required for identifying the optimal expression construct prior to large scale protein production in baculovirus infected insect cells. Biotechnol. Bioeng. 2016;113: 1975–1983. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
- Subjects :
- 0301 basic medicine
030103 biophysics
Baculoviridae
Recombinant Fusion Proteins
Green Fluorescent Proteins
Bioengineering
Computational biology
Hi5 cells
Biology
Protein Engineering
Applied Microbiology and Biotechnology
Article
Green fluorescent protein
Engineering Science of Biological Systems
03 medical and health sciences
Plasmid
Bioreactors
NOD2
SplitGFP
Protein biosynthesis
Sf9 Cells
Animals
protein expression screen
Cloning, Molecular
Biolector
high throughput screen
Expression vector
Protein engineering
Articles
biology.organism_classification
Molecular biology
030104 developmental biology
insect cells
Protein Expression Analysis
Biotechnology
Plasmids
Subjects
Details
- ISSN :
- 10970290
- Volume :
- 113
- Issue :
- 9
- Database :
- OpenAIRE
- Journal :
- Biotechnology and bioengineering
- Accession number :
- edsair.doi.dedup.....7ad166901e486afc2ea28195ac96b758