Back to Search
Start Over
Neutron diffraction studies of a class A beta-lactamase Toho-1 E166A/R274N/R276N triple mutant
- Source :
- Journal of molecular biology. 396(4)
- Publication Year :
- 2009
-
Abstract
- beta-Lactam antibiotics have been used effectively over several decades against many types of bacterial infectious diseases. However, the most common cause of resistance to the beta-lactam antibiotics is the production of beta-lactamase enzymes that inactivate beta-lactams by rapidly hydrolyzing the amide group of the beta-lactam ring. Specifically, the class A extended-spectrum beta-lactamases (ESBLs) and inhibitor-resistant enzymes arose that were capable of hydrolyzing penicillins and the expanded-spectrum cephalosporins and monobactams in resistant bacteria, which lead to treatment problems in many clinical settings. A more complete understanding of the mechanism of catalysis of these ESBL enzymes will impact current antibiotic drug discovery efforts. Here, we describe the neutron structure of the class A, CTX-M-type ESBL Toho-1 E166A/R274N/R276N triple mutant in its apo form, which is the first reported neutron structure of a beta-lactamase enzyme. This neutron structure clearly reveals the active-site protonation states and hydrogen-bonding network of the apo Toho-1 ESBL prior to substrate binding and subsequent acylation. The protonation states of the active-site residues Ser70, Lys73, Ser130, and Lys234 in this neutron structure are consistent with the prediction of a proton transfer pathway from Lys73 to Ser130 that is likely dependent on the conformation of Lys73, which has been hypothesized to be coupled to the protonation state of Glu166 during the acylation reaction. Thus, this neutron structure is in agreement with a proposed mechanism for acylation that identifies Glu166 as the general base for catalysis.
- Subjects :
- Models, Molecular
Stereochemistry
Protein Conformation
medicine.medical_treatment
Neutron diffraction
Mutant
Protonation
beta-Lactamases
Acylation
Structural Biology
Catalytic Domain
Hydrolase
polycyclic compounds
medicine
Escherichia coli
Monobactams
Molecular Biology
DNA Primers
chemistry.chemical_classification
Base Sequence
Chemistry
Escherichia coli Proteins
Hydrogen Bonding
Recombinant Proteins
Neutron Diffraction
Enzyme
Amino Acid Substitution
Beta-lactamase
Mutagenesis, Site-Directed
Protons
Subjects
Details
- ISSN :
- 10898638
- Volume :
- 396
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Journal of molecular biology
- Accession number :
- edsair.doi.dedup.....7af45d1ac89c4cd35a3b37c2e1cd55ed