Back to Search
Start Over
Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates
- Source :
- Uncertainty Management for Robust Industrial Design in Aeronautics ISBN: 9783319777665, Uncertainty Management for Robust Industrial Design in Aeronautics, Uncertainty Management for Robust Industrial Design in Aeronautics, Springer International Publishing, pp.53-69, 2018, 978-3-319-77767-2. ⟨10.1007/978-3-319-77767-2_4⟩
- Publication Year :
- 2018
- Publisher :
- Springer International Publishing, 2018.
-
Abstract
- International audience; The lack of an universal modelling approach for turbulence in Reynolds-Averaged Navier–Stokes simulations creates the need for quantifying the modelling error without additional validation data. Bayesian Model-Scenario Averaging (BMSA), which exploits the variability on model closure coefficients across several flow scenarios and multiple models, gives a stochastic, a posteriori estimate of a quantity of interest. The full BMSA requires the propagation of the posterior probability distribution of the closure coefficients through a CFD code, which makes the approach infeasible for industrial relevant flow cases. By using maximum a posteriori (MAP) estimates on the posterior distribution, we drastically reduce the computational costs. The approach is applied to turbulent flow in a pipe at Re= 44,000 over 2D periodic hills at Re=5600, and finally over a generic falcon jet test case (Industrial challenge IC-03 of the UMRIDA project).
- Subjects :
- UQ
Turbulence Modelling
Computer science
RANS
Bayesian probability
Posterior probability
Bayesian inference
Bayesian
01 natural sciences
Bayesian Calibration
010305 fluids & plasmas
Physics::Fluid Dynamics
[SPI]Engineering Sciences [physics]
010104 statistics & probability
Flow (mathematics)
0103 physical sciences
Maximum a posteriori estimation
Applied mathematics
A priori and a posteriori
Errors-in-variables models
0101 mathematics
CFD
Reynolds-averaged Navier–Stokes equations
Subjects
Details
- ISBN :
- 978-3-319-77766-5
978-3-319-77767-2 - ISBNs :
- 9783319777665 and 9783319777672
- Database :
- OpenAIRE
- Journal :
- Uncertainty Management for Robust Industrial Design in Aeronautics ISBN: 9783319777665, Uncertainty Management for Robust Industrial Design in Aeronautics, Uncertainty Management for Robust Industrial Design in Aeronautics, Springer International Publishing, pp.53-69, 2018, 978-3-319-77767-2. ⟨10.1007/978-3-319-77767-2_4⟩
- Accession number :
- edsair.doi.dedup.....7afeed75e28a2a94d38d750d48b0b550