Back to Search Start Over

Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates

Authors :
Martin Schmelzer
Paola Cinnella
Wouter N. Edeling
Richard P. Dwight
Delft University of Technology (TU Delft)
Stanford University
Laboratoire de Dynamique des Fluides (DynFluid)
Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)
Source :
Uncertainty Management for Robust Industrial Design in Aeronautics ISBN: 9783319777665, Uncertainty Management for Robust Industrial Design in Aeronautics, Uncertainty Management for Robust Industrial Design in Aeronautics, Springer International Publishing, pp.53-69, 2018, 978-3-319-77767-2. ⟨10.1007/978-3-319-77767-2_4⟩
Publication Year :
2018
Publisher :
Springer International Publishing, 2018.

Abstract

International audience; The lack of an universal modelling approach for turbulence in Reynolds-Averaged Navier–Stokes simulations creates the need for quantifying the modelling error without additional validation data. Bayesian Model-Scenario Averaging (BMSA), which exploits the variability on model closure coefficients across several flow scenarios and multiple models, gives a stochastic, a posteriori estimate of a quantity of interest. The full BMSA requires the propagation of the posterior probability distribution of the closure coefficients through a CFD code, which makes the approach infeasible for industrial relevant flow cases. By using maximum a posteriori (MAP) estimates on the posterior distribution, we drastically reduce the computational costs. The approach is applied to turbulent flow in a pipe at Re= 44,000 over 2D periodic hills at Re=5600, and finally over a generic falcon jet test case (Industrial challenge IC-03 of the UMRIDA project).

Details

ISBN :
978-3-319-77766-5
978-3-319-77767-2
ISBNs :
9783319777665 and 9783319777672
Database :
OpenAIRE
Journal :
Uncertainty Management for Robust Industrial Design in Aeronautics ISBN: 9783319777665, Uncertainty Management for Robust Industrial Design in Aeronautics, Uncertainty Management for Robust Industrial Design in Aeronautics, Springer International Publishing, pp.53-69, 2018, 978-3-319-77767-2. ⟨10.1007/978-3-319-77767-2_4⟩
Accession number :
edsair.doi.dedup.....7afeed75e28a2a94d38d750d48b0b550