Back to Search Start Over

Bayesian clustering in decomposable graphs

Authors :
Luke Bornn
François Caron
Department of Statistics [Vancouver] (UBC Statistics)
University of British Columbia (UBC)
Advanced Learning Evolutionary Algorithms (ALEA)
Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Source :
Bayesian Analysis, Bayesian Analysis, International Society for Bayesian Analysis, 2011, 6 (4), Bayesian Anal. 6, no. 4 (2011), 829-846, Bayesian Analysis, 2011, 6 (4), pp.829-845. ⟨10.1214/11-BA630⟩
Publication Year :
2010

Abstract

In this paper we propose a class of prior distributions on decomposable graphs, allowing for improved modeling flexibility. While existing methods solely penalize the number of edges, the proposed work empowers practitioners to control clustering, level of separation, and other features of the graph. Emphasis is placed on a particular prior distribution which derives its motivation from the class of product partition models; the properties of this prior relative to existing priors is examined through theory and simulation. We then demonstrate the use of graphical models in the field of agriculture, showing how the proposed prior distribution alleviates the inflexibility of previous approaches in properly modeling the interactions between the yield of different crop varieties.<br />3 figures, 1 table

Details

Language :
English
ISSN :
19360975 and 19316690
Database :
OpenAIRE
Journal :
Bayesian Analysis, Bayesian Analysis, International Society for Bayesian Analysis, 2011, 6 (4), Bayesian Anal. 6, no. 4 (2011), 829-846, Bayesian Analysis, 2011, 6 (4), pp.829-845. ⟨10.1214/11-BA630⟩
Accession number :
edsair.doi.dedup.....7b4ed8628286c96027ad7f47cbb1fc30
Full Text :
https://doi.org/10.1214/11-BA630⟩