Back to Search Start Over

Efficient Prime Counting and the Chebyshev Primes

Authors :
Planat, Michel
Solé, Patrick
Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST)
Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Télécom ParisTech
Source :
Journal of Discrete Mathematics, Journal of Discrete Mathematics, Hindawi Publishing Corporation, 2013, 2013, pp.ID 491627. ⟨10.1155/2013/491627⟩

Abstract

The function $\epsilon(x)=\mbox{li}(x)-\pi(x)$ is known to be positive up to the (very large) Skewes' number. Besides, according to Robin's work, the functions $\epsilon_{\theta}(x)=\mbox{li}[\theta(x)]-\pi(x)$ and $\epsilon_{\psi}(x)=\mbox{li}[\psi(x)]-\pi(x)$ are positive if and only if Riemann hypothesis (RH) holds (the first and the second Chebyshev function are $\theta(x)=\sum_{p \le x} \log p$ and $\psi(x)=\sum_{n=1}^x \Lambda(n)$, respectively, $\mbox{li}(x)$ is the logarithmic integral, $\mu(n)$ and $\Lambda(n)$ are the M\"obius and the Von Mangoldt functions). Negative jumps in the above functions $\epsilon$, $\epsilon_{\theta}$ and $\epsilon_{\psi}$ may potentially occur only at $x+1 \in \mathcal{P}$ (the set of primes). One denotes $j_p=\mbox{li}(p)-\mbox{li}(p-1)$ and one investigates the jumps $j_p$, $j_{\theta(p)}$ and $j_{\psi(p)}$. In particular, $j_p1$ for $p<br />Comment: 15 pages section 2.2 added, new sequences added, Fig. 2 and 3 are new

Details

ISSN :
20909837 and 20909845
Database :
OpenAIRE
Journal :
Journal of Discrete Mathematics, Journal of Discrete Mathematics, Hindawi Publishing Corporation, 2013, 2013, pp.ID 491627. ⟨10.1155/2013/491627⟩
Accession number :
edsair.doi.dedup.....7ba4bff7654b1558387492ad83c39c4a
Full Text :
https://doi.org/10.1155/2013/491627⟩