Back to Search
Start Over
Efficient Prime Counting and the Chebyshev Primes
- Source :
- Journal of Discrete Mathematics, Journal of Discrete Mathematics, Hindawi Publishing Corporation, 2013, 2013, pp.ID 491627. ⟨10.1155/2013/491627⟩
-
Abstract
- The function $\epsilon(x)=\mbox{li}(x)-\pi(x)$ is known to be positive up to the (very large) Skewes' number. Besides, according to Robin's work, the functions $\epsilon_{\theta}(x)=\mbox{li}[\theta(x)]-\pi(x)$ and $\epsilon_{\psi}(x)=\mbox{li}[\psi(x)]-\pi(x)$ are positive if and only if Riemann hypothesis (RH) holds (the first and the second Chebyshev function are $\theta(x)=\sum_{p \le x} \log p$ and $\psi(x)=\sum_{n=1}^x \Lambda(n)$, respectively, $\mbox{li}(x)$ is the logarithmic integral, $\mu(n)$ and $\Lambda(n)$ are the M\"obius and the Von Mangoldt functions). Negative jumps in the above functions $\epsilon$, $\epsilon_{\theta}$ and $\epsilon_{\psi}$ may potentially occur only at $x+1 \in \mathcal{P}$ (the set of primes). One denotes $j_p=\mbox{li}(p)-\mbox{li}(p-1)$ and one investigates the jumps $j_p$, $j_{\theta(p)}$ and $j_{\psi(p)}$. In particular, $j_p1$ for $p<br />Comment: 15 pages section 2.2 added, new sequences added, Fig. 2 and 3 are new
- Subjects :
- Context (language use)
Primary 11N13, 11N05
Secondary 11A25, 11N37
Prime counting
Lambda
01 natural sciences
Chebyshev function
Prime (order theory)
Combinatorics
symbols.namesake
[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
FOS: Mathematics
Chebyshev functions
Number Theory (math.NT)
0101 mathematics
Mathematics
bepress|Physical Sciences and Mathematics|Mathematics
Mathematics - Number Theory
bepress|Physical Sciences and Mathematics|Mathematics|Number Theory
010102 general mathematics
Function (mathematics)
Prime-counting function
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
010101 applied mathematics
Riemann hypothesis
symbols
Logarithmic integral function
High Energy Physics::Experiment
Subjects
Details
- ISSN :
- 20909837 and 20909845
- Database :
- OpenAIRE
- Journal :
- Journal of Discrete Mathematics, Journal of Discrete Mathematics, Hindawi Publishing Corporation, 2013, 2013, pp.ID 491627. ⟨10.1155/2013/491627⟩
- Accession number :
- edsair.doi.dedup.....7ba4bff7654b1558387492ad83c39c4a
- Full Text :
- https://doi.org/10.1155/2013/491627⟩