Back to Search Start Over

Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine

Authors :
Haixia Zhong
Zhongjie Liu
Fuchun Zhang
Xiaoming Zhou
Xiaoxia Sun
Yongyao Li
Wenwen Liu
Hua Xiao
Nan Wang
Hong Lu
Mingqi Pan
Xinyu Wu
Yongfeng Zhou
Source :
Horticulture research. 9
Publication Year :
2021

Abstract

Grafting, which joins a scion from a cultivar with the stem of a rootstock from a grapevine wild relative, is commonly used in viticulture. Grafting has crucial effects on various phenotypes of the cultivar, including its phenology, biotic and abiotic resistance, berry metabolome, and coloration, but the underlying genetics and regulatory mechanisms are largely unexplored. In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at three developmental stages (45, 75, and 105 days after flowering) of the Crimson Seedless cultivar (Vitis vinifera) grafted onto four rootstocks (three heterografts, CS/101-14, CS/SO4, and CS/110R and one self-graft, CS/CS) with own-rooted graft-free Crimson Seedless (CS) as the control. All the heterografts had a significant effect on berry reddening as early as ~45 days after flowering. The grafting of rootstocks promoted anthocyanin biosynthesis and accumulation in grape berries. The metabolomic features showed that cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, malvidin 3-O-glucoside, peonidin 3-O-glucoside, and petunidin 3-O-glucoside were the pigments responsible for the purplish-red peel color. Transcriptomic analyses revealed that anthocyanin biosynthesis-related genes, from upstream (phenylalanine ammonia-lyase) to downstream (anthocyanidin 3-O-glucosyltransferase and anthocyanidin synthase), were upregulated with the accumulation of anthocyanins in the heterografted plants. At the same time, all these genes were also highly expressed and more anthocyanin was accumulated in self-grafted CS/CS samples compared with own-rooted graft-free CS samples, suggesting that self-grafting may also have promoted berry reddening in grapevine. Our results reveal global transcriptomic and metabolomic features in berry color regulation under different grafting conditions that may be useful for improving berry quality in viticulture.

Details

ISSN :
26626810
Volume :
9
Database :
OpenAIRE
Journal :
Horticulture research
Accession number :
edsair.doi.dedup.....7ba956b727882841542b7e5fd5092381