Back to Search
Start Over
Analysis of task-related MEG functional brain networks using dynamic mode decomposition
- Source :
- Journal of Neural Engineering, Journal of Neural Engineering, 2023, 20 (1), pp.016011. ⟨10.1088/1741-2552/acad28⟩
- Publication Year :
- 2022
-
Abstract
- Objective. Functional connectivity networks explain the different brain states during the diverse motor, cognitive, and sensory functions. Extracting connectivity network configurations and their temporal evolution is crucial for understanding brain function during diverse behavioral tasks. Approach. In this study, we introduce the use of dynamic mode decomposition (DMD) to extract the dynamics of brain networks. We compared DMD with principal component analysis (PCA) using real magnetoencephalography data during motor and memory tasks. Main results. The framework generates dominant connectivity brain networks and their time dynamics during simple tasks, such as button press and left-hand movement, as well as more complex tasks, such as picture naming and memory tasks. Our findings show that the proposed methodology with both the PCA-based and DMD-based approaches extracts similar dominant connectivity networks and their corresponding temporal dynamics. Significance. We believe that the proposed methodology with both the PCA and the DMD approaches has a very high potential for deciphering the spatiotemporal dynamics of electrophysiological brain network states during tasks.
- Subjects :
- MESH: Magnetoencephalography
functional connectivity (FC)
Biomedical Engineering
behavioral tasks
dynamic mode decomposition (DMD)
Magnetoencephalography (MEG) Principal Component Analysis (PCA) Dynamic Mode Decomposition (DMD) Functional Connectivity (FC) Brain Network States behavioral tasks
brain network states
MESH: Movement
MESH: Magnetic Resonance Imaging
MESH: Brain
Cellular and Molecular Neuroscience
Magnetoencephalography (MEG)
[SDV.IB]Life Sciences [q-bio]/Bioengineering
[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
principal component analysis (PCA)
MESH: Electrophysiological Phenomena
MESH: Brain Mapping
Subjects
Details
- ISSN :
- 17412552 and 17412560
- Database :
- OpenAIRE
- Journal :
- Journal of neural engineering
- Accession number :
- edsair.doi.dedup.....7bde0a807ef989ba1ecfae87f9fe396f
- Full Text :
- https://doi.org/10.1088/1741-2552/acad28⟩