Back to Search
Start Over
The commutants of certain Toeplitz operators on weighted Bergman spaces
- Publication Year :
- 2008
-
Abstract
- For $\alpha>-1$, let $A^2_{\alpha}$ be the corresponding weighted Bergman space of the unit ball in $\mathbb{C}^n$. For a bounded measurable function $f$, let $T_f$ be the Toeplitz operator with symbol $f$ on $A^2_{\alpha}$. This paper describes all the functions $f$ for which $T_f$ commutes with a given $T_g$, where $g(z)=z_{1}^{L_1}... z_{n}^{L_n}$ for strictly positive integers $L_1,..., L_n$, or $g(z)=|z_1|^{s_1}... |z_n|^{s_n}h(|z|)$ for non-negative real numbers $s_1,..., s_n$ and a bounded measurable function $h$ on $[0,1)$.<br />Comment: 18 pages
- Subjects :
- Unit sphere
Measurable function
Applied Mathematics
Mathematical analysis
Weighted Bergman space
Centralizer and normalizer
Toeplitz matrix
Functional Analysis (math.FA)
Combinatorics
Mathematics - Functional Analysis
Toeplitz operator
Bergman space
Bounded function
FOS: Mathematics
47B35
Commutant
Analysis
Mathematics
Real number
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....7c01be2350a3a0d258d81d8e8a07f716