Back to Search
Start Over
Methacrylic Acid Based Polymer Networks with a High Content of Unfunctionalized Nanosilica: Particle Distribution, Swelling, and Rheological Properties
- Source :
- Journal of Physical Chemistry C
- Publication Year :
- 2014
- Publisher :
- American Chemical Society (ACS), 2014.
-
Abstract
- The poor stability and tendency to agglomerate of unfunctionalized nano-SiO2 in the presence of ionic species presents a challenge for preparing poly(methacrylic acid)/nano-SiO2 nanocomposite (NC) hydrogels with desired strength and swelling capability. We proposed a facile and eco-friendly method for the preparation of PMAA/SiO2 NC hydrogels using unfunctionalized silica nanoparticles (NPs) in the form of a suspension. SEM and TEM analyses showed that the NP distribution in the polymer matrix highly depended on the particle concentration. At lower concentrations (up to 13.9 wt %), the NPs were uniformly dispersed as single nanoparticles. With an increase in NP concentration, homogeneously dispersed nanoscale aggregates were formed, while a further increase in the silica concentration led to the formation of homogeneous structures consisting of mutually interacting nanosilica particles coated with PMAA. Swelling experiments confirmed that the silica NPs behaved as adhesive fillers that interacted with PMAA chains, causing the formation of a thin polymer layer strongly adsorbed at the particle interface. The thicknesses of the adsorbed polymer layer, as well as the swelling kinetic parameters, were strongly influenced by nanoparticle size and concentration. Combining nanosilica and PMAA in the form of a soft hydrogel network provided stabilization of the NPs and ensured better mechanical properties of the obtained NC hydrogels compared to pure polymer matrix. The optimal loadings, necessary to ensure the most improved dynamical-mechanical properties, were found in the case of the formation of homogeneously dispersed, nanosized silica aggregates in a PMAA matrix.
- Subjects :
- Materials science
Nanoparticle
02 engineering and technology
010402 general chemistry
01 natural sciences
chemistry.chemical_compound
Polymer chemistry
medicine
Physical and Theoretical Chemistry
chemistry.chemical_classification
Nanocomposite
technology, industry, and agriculture
Polymer
021001 nanoscience & nanotechnology
0104 chemical sciences
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
General Energy
Methacrylic acid
chemistry
Chemical engineering
Self-healing hydrogels
Particle
Adhesive
Swelling
medicine.symptom
0210 nano-technology
Subjects
Details
- ISSN :
- 19327455 and 19327447
- Volume :
- 119
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry C
- Accession number :
- edsair.doi.dedup.....7c6afd4bfd35739af96a12a16b3dafbd
- Full Text :
- https://doi.org/10.1021/jp5020548