Back to Search
Start Over
The N-widths of spaces of holomorphic functions on bounded symmetric domains, II
- Source :
- Journal of Computational and Applied Mathematics. 144(1-2):175-186
- Publication Year :
- 2002
- Publisher :
- Elsevier BV, 2002.
-
Abstract
- Let D be a bounded symmetric domain and Σ be the Shilov boundary of D. For λ∈W, the Wallach set, and a nonnegative integer l, we study the weighted Bergman space Aλ2(D) and the weighted Bergman–Sobolev space A2,λ,l(D). For 0
- Subjects :
- Reproducing kernel
Function space
Holomorphic function
Weighted Bergman space
010103 numerical & computational mathematics
Hardy space
Jordan pair
01 natural sciences
Combinatorics
symbols.namesake
N-widths
Radial derivative
0101 mathematics
Shilov boundary
Mathematics
Mathematics::Functional Analysis
Mathematics::Complex Variables
Applied Mathematics
010102 general mathematics
Mathematical analysis
Hilbert space
Symmetric cone
Computational Mathematics
Bergman space
Bounded symmetric domain
Bounded function
Symmetric space
symbols
Subjects
Details
- ISSN :
- 03770427
- Volume :
- 144
- Issue :
- 1-2
- Database :
- OpenAIRE
- Journal :
- Journal of Computational and Applied Mathematics
- Accession number :
- edsair.doi.dedup.....7c7e165f6d7852334cd8ff00a2fcea42
- Full Text :
- https://doi.org/10.1016/s0377-0427(01)00558-1