Back to Search
Start Over
Démélange, déconvolution et débruitage conjoints d’un modèle convolutif parcimonieux avec dérive instrumentale, par pénalisation de rapports de normes ou quasi-normes lissées (PENDANTSS)
- Source :
- GRETSI 2023, GRETSI 2023, Aug 2023, Grenoble, France
- Publication Year :
- 2023
- Publisher :
- HAL CCSD, 2023.
-
Abstract
- Denoising, detrending, deconvolution: usual restoration tasks, traditionally decoupled. Coupled formulations entail complex ill-posed inverse problems. We propose PENDANTSS for joint trend removal and blind deconvolution of sparse peak-like signals. It blends a parsimonious prior with the hypothesis that smooth trend and noise can somewhat be separated by low-pass filtering. We combine the generalized pseudo-norm ratio SOOT/SPOQ sparse penalties $\ell_p/\ell_q$ with the BEADS ternary assisted source separation algorithm. This results in a both convergent and efficient tool, with a novel Trust-Region block alternating variable metric forward-backward approach. It outperforms comparable methods, when applied to typically peaked analytical chemistry signals. Reproducible code is provided: https://github.com/paulzhengfr/PENDANTSS.<br />Comment: in French language
- Subjects :
- Signal Processing (eess.SP)
FOS: Electrical engineering, electronic engineering, information engineering
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Electrical Engineering and Systems Science - Signal Processing
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Subjects
Details
- Language :
- French
- Database :
- OpenAIRE
- Journal :
- GRETSI 2023, GRETSI 2023, Aug 2023, Grenoble, France
- Accession number :
- edsair.doi.dedup.....7c8500251a997949223fcf41977d302d