Back to Search Start Over

Démélange, déconvolution et débruitage conjoints d’un modèle convolutif parcimonieux avec dérive instrumentale, par pénalisation de rapports de normes ou quasi-normes lissées (PENDANTSS)

Authors :
Zheng, Paul
Chouzenoux, Emilie
Duval, Laurent
Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH)
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
IFP Energies nouvelles (IFPEN)
European Project: ERC-2019-STG-850925,MAJORIS(2020)
Source :
GRETSI 2023, GRETSI 2023, Aug 2023, Grenoble, France
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

Denoising, detrending, deconvolution: usual restoration tasks, traditionally decoupled. Coupled formulations entail complex ill-posed inverse problems. We propose PENDANTSS for joint trend removal and blind deconvolution of sparse peak-like signals. It blends a parsimonious prior with the hypothesis that smooth trend and noise can somewhat be separated by low-pass filtering. We combine the generalized pseudo-norm ratio SOOT/SPOQ sparse penalties $\ell_p/\ell_q$ with the BEADS ternary assisted source separation algorithm. This results in a both convergent and efficient tool, with a novel Trust-Region block alternating variable metric forward-backward approach. It outperforms comparable methods, when applied to typically peaked analytical chemistry signals. Reproducible code is provided: https://github.com/paulzhengfr/PENDANTSS.<br />Comment: in French language

Details

Language :
French
Database :
OpenAIRE
Journal :
GRETSI 2023, GRETSI 2023, Aug 2023, Grenoble, France
Accession number :
edsair.doi.dedup.....7c8500251a997949223fcf41977d302d