Back to Search Start Over

Gambling for resurrection and the heat equation on a triangle

Authors :
Christophette Blanchet-Scalliet
Stefan Ankirchner
Chao Zhou
Nabil Kazi-Tani
Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany]
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Sciences Actuarielle et Financière (SAF)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon
National University of Singapore (NUS)
Source :
Applied Mathematics and Optimization, Applied Mathematics and Optimization, Springer Verlag (Germany), In press, ⟨10.1007/s00245-020-09741-9⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; We consider the problem of controlling the diffusion coefficient of a diffusion with constant negative drift rate such that the probability of hitting a given lower barrier up to some finite time horizon is minimized. We assume that the diffusion rate can be chosen in a progressively measurable way with values in the interval [0, 1]. We prove that the value function is regular, concave in the space variable, and that it solves the associated HJB equation. To do so, we show that the heat equation on a right triangle, with a boundary condition that is discontinuous in the corner, possesses a smooth solution.

Details

Language :
English
ISSN :
00954616 and 14320606
Database :
OpenAIRE
Journal :
Applied Mathematics and Optimization, Applied Mathematics and Optimization, Springer Verlag (Germany), In press, ⟨10.1007/s00245-020-09741-9⟩
Accession number :
edsair.doi.dedup.....7ced41db8b7b5fab20799c74b53314ff