Back to Search
Start Over
RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways
- Source :
- Cell Death & Disease
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- The reticulon family has been found to induce apoptosis, inhibit axon regeneration and regulate protein trafficking. However, little is known about the mechanisms of how reticulon proteins are involved in neuronal death-promoting processes during ischemia. Here, we report that the expression of Reticulon Protein 1-C (RTN1-C) was associated with the progression of cerebral ischemia/reperfusion (I/R) injury. Using a combination of rat middle cerebral artery occlusion (MCAO) stroke and oxygen-glucose deprivation followed by reoxygenation (OGD/R) models, we determined that the expression of RTN1-C was significantly increased during cerebral ischemic/reperfusion. RTN1-C overexpression induced apoptosis and increased the cell vulnerability to ischemic injury, whereas RTN1-C knockdown reversed ischemia-induced apoptosis and attenuated the vulnerability of OGD/R-treated neural cells. Mechanistically, we demonstrated that RTN1-C mediated OGD/R-induced apoptosis through ER stress and mitochondria-associated pathways. RTN1-C interacted with Bcl-xL and increased its localization in the ER, thus reducing the anti-apoptotic activity of Bcl-xL. Most importantly, knockdown of Rtn1-c expression in vivo attenuated apoptosis in MCAO rats and reduced the extent of I/R-induced brain injury, as assessed by infarct volume and neurological score. Collectively, these data support for the first time that RTN1-C may represent a novel candidate for therapies against cerebral ischemia/reperfusion injury.
- Subjects :
- 0301 basic medicine
Cancer Research
Pathology
medicine.medical_specialty
Immunology
Ischemia
Apoptosis
Nerve Tissue Proteins
Pharmacology
Mitochondrion
Brain Ischemia
Rats, Sprague-Dawley
03 medical and health sciences
Cellular and Molecular Neuroscience
0302 clinical medicine
medicine
Animals
Axon
Gene knockdown
business.industry
Brain
Infarction, Middle Cerebral Artery
Cell Biology
Endoplasmic Reticulum Stress
medicine.disease
Rats
Oxygen
Stroke
Glucose
030104 developmental biology
medicine.anatomical_structure
Gene Expression Regulation
Reticulon
Gene Knockdown Techniques
Reperfusion Injury
Unfolded protein response
Original Article
business
Reperfusion injury
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 20414889
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Cell Death & Disease
- Accession number :
- edsair.doi.dedup.....7cf3fe520d13e6c3176fe166e84f0d17
- Full Text :
- https://doi.org/10.1038/cddis.2017.465